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I. INTRODUCTION

In this report, we summarize the findings from a study on a number of
fundamental problems in solar-terrestrial relationships supported by a three
year grant from the Air Force Office of scientific Research (ASOSR-88-0013) in
the time period November 1, 1987 - March 31, 1?91. The specific emphasis of
this study is to deal with those problems concerning the dynamics of
photospheric/corona/interplanetary coupling mechanisms (PCIM).

It is understood that solar-terrestiral research has its ultimate goal in
the development of the scientific capability of objective prediction of tghe
earth’s space environment. To attain this goal, it is necessary to acquire
sufficient understanding about the phy;ical processes in the photosphere,
corona, and interplanetary space and to develop effective skills with
numerical simulation of the dynamics in these processes.

In order to achieve these goals, we have taken a two-fold approach; we
first identified a possible physical mechanism and performed a synthesis
calculation using self-consistent magnetohydrodynamic (MHD) theory via
numerical simulation as well as analytical methods. These results were then
tested by available observations. If no observations were available, the
results were used as a guide for future planned observations. The physical
scenario for the present study can be described as follows:

First, we investigated solar surface activities. This was accomplished
by using our newly deweloped nonlinear force-free (NLFF) model (Wu, et al.,
1990, see Section VI-3) together with solar magnetograph data which were
obtained by the Solar g;tical‘og;érvational Network (SOON) system of the Air
Force and NASA/Marshall Space Flight Center. Representative results are shown
in the upper left panel of Figure 1 in which (a) shows the observed vector
magnetic field at photospheric level and (b) shows the computed field lines of

the observed structures extrapolating from data given in (a). 1In the lower




left panel of Figure 1 we present the results on the study shear-motion-
induced non-equilibrium which may lead to the initiation of Coronal Mass
Ejections (CMEs). 1In this study, we found that when the shear angle reaches a
eritical value, the arcade will become unstable and will be ejected to the
middle atmosphere (i.e. the corona). This critical value of shear could be
tested by observation. A detailed account of these findings is described in
Section IV.1.

Next, we investigated the coronal responses due to the mass ejection.
This result is shown in the upper right panel of Figure 1 where (a) shows the
input to simulate the mass ejection by prescribing a mass flux flowing from
the lower boundary, (b) shows the initial magnetic field configuration and the
location of the input and (c) shows the results 5500 sec after introduction of
the disturbance, which exhibits the non-linear interaction between mass motion
and MHD waves. It cleafly indicates that the outward propagation of MHD fast
waves (or shocks) and MHD slow shocks in the inner region shown as the twin
peaks in the upper right panel of Figure 1.

Finally, we studied the interplanetary responses as shown in the lower
right panel of Figure 1. This panel (a) shows a radio astronomical
interplanetary scintillation (IPS) observation of the disturbed solar wind
density during an earlier period in September 1980 near solar maximum (cycle
21); (b) shows a three-dimensional MHD simulation of density compression
regions (red) and rar;faction (blue). The resemblence between the observation
and simulation is cléaniy indicaged, (c) shows the solar wind density response
in the ecliptic plane during a series of major solar flares and CMEs at solar
minimum in February 1986; spacecraft data at the designated location (Earth,
Giotto and Sakigake) were used for comparison with the MHD similuation. To

facilitate these studies, a number of new numerical techniques were developed.
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These findings are included in section VI. The subject of fundamental
physical mechanisms of solar activities is presented in Section II. The
results of solar atmospheric magnetohydrodynamic waves are preseated in
Section ITI. In Section IV we discuss the solar-interplanetary coupling
studies. The numeribal modeling of global solar interplanetary environment is
included in Section V. Finally, the concluding remarks are presented in
Section VII. In summary, a total of sixteen articles were published in
Astrophysical Journal, Jouranl of Geophysical Resarch, Solar Physics, etc. to

present our results in the public literature.

I11. INVESTIGATION OF FUNDAMENTAL THYSICAL HMECHANISMS OF SOLAR ACTIVITIES
In this section, we employed both macroscopic theory of
magnetohydrodynamics and microscopic kinetic theory (i.e. Boltzmann equations)
to study the physical mechanims which may explain the cause of solar
activities. Four papers were included to report these results.
MHD Simulation of Mass Injection: A Mechanism for the

formation of Active Region Loops, in J. Adv. Space Res.
Vol. 8, No. 11, 215-219, 1988.

A Dynamical Model of Prominence Loops. T. Yeh, in Solar
Phvs., Vol. 124, 251-269, 1989.

Soliton and Strong Langmuir Turbulence in Solar Flares

Process in Astrophsys. and Space Sci., Vol. 152, 287-
311, 1989.

The Role of Condensation and Heat Conduction in the
Formation cf  Prominences: A MHD Simulation., in Solar
Phvs., Vol. 125, 277-293, 1990.
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MHD SIMULATION OF MASS INJECTION: A
MECHANISM FOR THE FORMATION OF
ACTIVE REGION LOOPS

Chung-Chieh Cheng* and S. T. Wu**

*Naval Research Laboratory, Washington, DC 20375. U.S.A.
s*University of Alabama in Huntsville, Huntsville, AL 35899, U.S.A.

ABSTRACT

We have used a 2-D nonlinear MHD numerical code to simulate the formation and dynamic
evolution of active regions loops subjected to mass injections at the footpoints. We also
calculated the UV and X-ray signatures of the plasmas. We find that it is possible to form
loops in & low beta plasma that occur in the solar active repions.

INTRODUCTION

Observations in XUV and in X-ray from $kylab have shown that the solar active region is
composed primarily of loop structures of various temperatures and sizes (cf. Vaisna eg sl.
11/, Tousey et al. /2/, Reeves et al. /3/). Although there are numerous theoretical studies
of the heating of coronal loops (for a review see Kuperus, Ionson, and Spicer /4/), the
problem of the formation of loops is largely not understood. In this paper, we have
numerically simulated, using a 2-D MHD code, the formation of coronal loop structures in
sctive regions under the assumption of mass injections from the loop footpoints. We have
also applied a spectroscopic code to the numerical results to obtain the XUV and X-ray
signatures of the evolution of the dynamics of the mass injection. We find that it is
possible to form loop structures in active regions from the mass injections if the magnetic
field is strong enough (i.e, low plasma beta). In contrast, Wu et al. /5/ and An et _al. /6/
have found that mass injection will result in the formation of a quiescent prominence in a
Kippenhahn-Schluter configuration if the plasma beta is high (e.g, beta=2).

NUMERICAL MODEL

The numerical simulation is done with a 2-D, non-planar, time dependent non-ideal MHD code.
The governing MHD equations are given by Wu et al. /7/, except now thermal conduction and
radiative losses are included in the energy equation. The numerical algorithm is based on
the method of the fully implicit continuous Eulerian scheme (Hu and Wu /8/; Wu and Wang
/9/). The computation domain 18 8000 km in height and 16000 km in width. Mass injection is
treuted as an initial boundary value problem, and the characteristic method (Hu and Wu, /8/)

is used =0 specify some of the boundary conditions. The upper boundary is treated as a non-
rcfleccive surface,

For the present simulation, mass is injected at the lower boundary of a gravitationally
stratified plasma permeated with an initially dipole magnetic field (Fig. 1). The
atmosphere is afsumed to besinitially hydrostatic and isothermal with a temperature of 108 K
and a number density of 5x109 cm-3 at the lower boundary. The mass is injected with a

density and temperature a the lower boundary. Choice of the initjal atmosphere corresponds
to the conditions of solar active regions.

RESULTS

A'4] <!

Figure 2 shows the dynamic evolution of the magnetic field, the temperature and the density
for the symmetric case for which the mass injection velocity is 40 km/sec and the initial
plasma beta is 0.5. We see that after 800 sec, the regions on the side of the injection
locations became more dense and cooler than the initial atmosphere. At 1600 sec, the
temperature in the condensed regions has decreased about 102 and the density increased about
307 as compared with the surroundings. At t=3146 sec, the temperature there has decreased
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5 x 109 cm*3 at the lower boundary. The arrows indicate the
locncions of mass injection.
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Fig. 2 Time esvolution of the plasma for the symmetric mass

injection case with injection velocity of 40 km/sec. Initial
plasma beta is 0.5

to less than 7x105 K, and the density increased to more than 1010 cm-3, As we can see from
the figure, as mass injecticn proceeds the adjacent magnetic field is squeezed which
compresses the plasma there and causes condensation. Note that the magnetic field is strong

enough to support the plasmas, and no pit is formed as in the case of high beta cases
studied by Wu et _al. /S/, and An et 8l. /6/.

XUV and X-Ruy $pectroscopic Sigmatures

Once we know the evolution of the temperacure and density of the plasmas, we can calculate
the XUV and X-ray radiation signatures., We have calculated the emissign distribution
(photonslcm3 Tsec) for'the lines : N V 1238 A (1. 6x104 K), Ne VII 465 A (5x10° K), Mg VIII
437 A (8x105 K), Mg IX 368 & (1x1C6 K), and O VII 22 & (2x106 K). The temperatures
indicated for each line is the temperature at which the emission for that line is at
maximum. These lines are typical of the solar transition region and corona. The results
show that the N V em{ssions are concentrated in bright kernels at the location of mass
injections, while the Ne VII line shows extensions toward higher altitudes, and the coronal

0 VII line shows loop-like structures. Figures 3 and 4 show the emission distributions at
various times for selected lines.

The results for the case with higher mass injection velocity of 60 km/sec and plasma
beta=0.5 are similar to the above case, except now the evolution progresses faster, and the
formation of the lonp-like structures occurs much earlier. At t=1600 sec, loop-like
structures can be observed in the coronal line 0 VII.
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Figures 5 and 6 show the results for an asymmetric mass injection with velocity of 100
kn/sec in an ir'xit:l.al atmosphere with beta=l.0. Again, the dynamic evolution is similar to
the symmetric injection case. However, in contrast to the symmetric cases, the loop

structure seen in O VII has asymmetric emission distribution with one side of the loop much
brighter than the other.
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DISCUSSION

- v
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distribution for the Ne VII, Mg VIII, and 0 VII
times for the asymmetric mass injection case.

We have numerically simulated the dynamic evolution of mass injections in a solar atmosphere

and calculated the XUV and X-ray signatures.

We find that for an atmosphere with small

plasma beta, mass injection produces condensations and provides the mass of loop-like

structures.

The dense and cooler regions will be observed in the transition regions lines

such as Ne VII as elongated emission structures reminiscent of the the incomplete loops co

often observea from Skylab.

In the hotter coronal lines such as 0 VII we will observe loop-
like structures similar to those observed in X-ray images from Skylab.

We note that the

nass injection velocities we used in this paper are somewhat high compared to those
generally observed in the active region, although the mass injection could correspond to

spicule-like events that occur in the active regicns.

Our primary purpose here is to try to

understand the physics involved in the interaction between the mass injection and the

confining magnetic field.

We have seen that mass injection into the magnetic configuration

from the footpoint could produce loop-like structures provided that the magnetic field is

11
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strong enough to support the injected material. Thus mass injection could be a mechanism of
loop formation in the active regions. In future simulations, more resalistic mass injection

velocities of a few kilometers per sec will be used. These low evaporation velocities could
be produced by heating at lower levels at the footpoints.

The work done by S.T. Wu was supported by NASA under grant NAGW-9 and by Air Force under
grant AFOSR-88-00013.
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A DYNAMICAL MODEL OF PROMINENCE LOOPS

TYAN YEH
Space Environment Laboratorv, NOAA Environmental Research Laboratories, Boulder., CO 80303, U.5.4.

(Received 10 August. 1988; in revised form 26 June, 1989)

Abstract, A dynamical model of prominence loops is constructed on the basis of the theory of hydromagnetic
buoyancy force. A prominence loop is regarded as a flux rope immersed in the solar atmosphere above a
bipolar region of the photospheric magnetic field. The motion of a loop is partitioned into a translational
motion, which accounts for the displacement of the centroidal axis of the loop, and an expansional motion,
which accounts for the displacement of the periphery of the loop relative to the axis. The translational motion
is driven by the hydromagnetic buoyancy force exerted by the surrounding medium of the solar atmosphere
and the gravitational force exerted by the Sun. The expansional motion is driven by the pressare gradient
that sustains the pressure difference between internal and external gas pressures and the self-induced
Lorentz force that results from interactions among internal currents. The main constituent of the hydro-
magnetic buoyancy force on a prominence loop is the diamagnetic force exerted on the internal currents
by the external currents that sustain the pre-existing magnetic field. By spatial transformation between
magnetic and mechanical stresses, the diamagnetic force is manifested through a mechanical force acting
at various mass elements of the prominence. For a prominence loop in equilibrium, the gravitational force

is balanced by the hydromagnetic buoyancy force and the Lorentz force of helical magnetic field is balanced
by a gradient force of gas pressure.

1. Introduction

Solar prominences are cool, dense plasmas trapped in the hot, tenuous coronal
atmosphere near the solar surface (see Tandberg-Hanssen, 1974). They consist of a
system of bundles of magnetic flux and the material constricted therein. Long-lived
quiescent prominences are formed in the neighborhoods of weak bipolar regions of the
photospheric magnetic field, with orientation almost along the polarity neutral lines (see
Mclntosh, 1979). Short-lived active prominences associated with stronger magnetic
fields and short-lived postflare loop prominences appear above active regions near
sunspots. The weight of the prominence material is apparently supported by forces that
result from interactions among currents. Much of the past theoretical work has been
aimed at revealing the magnetic configurations that provide the requisite uplifting
magnetic force (e.g., Kippenhahn and Schliiter, 1957; Anzer and Tandberg-Hanssen,
1970; Kuperus and Raadu, 1974; Low, 1981). These models of quiescent prominences
are based on mathematical solutions to the equations of magnetohydrostatic equili-
brium.

A quiescent prominence may lose its equilibrium when it is subject to disturbances.
A perturbed prominence may find a new equilibrium or may run away in an eruption
and eventualily disintegrate. In the process of eruption, each prominence loop evolves
dynamically and maintains itself as a separate object from the ambient medium. So does
a loop in active prominences in the absence of the catastrophic occurrence of magnetic
reconnection. Therefore, it is desirable to construct dynamical models for prominence

Solar Physics 124: 251-269, 1989.
© 1989 Kluwer Academic Publishers. Printed in Belgium.
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loops and to treat their quiescent states as special situations when there are no
unbalanced forces (Sakurai, 1976; Pneuman, 1984). Such a theoretical approach is very
much like that for looplike coronal mass ejections (Yeh, 1982).

Based on the theory of hydromagnetic buoyancy force for flux ropes (Yeh, 1985), we
construct a new dynamical model of prominence loops. This model differs from
Pneuman’s model in the inclusion of the accelerations of translational and expansional
motions for a prominence loop. Pneuman prescribes the translational motion kinemati-
cally, without specifying the force that overcomes the gravitational pull, and assumes
that the Lorentz force is balanced by the gradient force of gas pressure which matches
the external conditions. In the new model, we regard the flux rope that represents a
prominence loop as an extraneous body immersed in the magnetized medium of the
solar atmosphere. Other loops in the prominence system are regarded as being far away
and not causing significant interaction. Polarization currents are induced at the interface
to maintain the separation of the loop’s helical magnetic field lines from the bipolar
magnetic field lines of the external medium. The ambient hydromagnetic pressure exerts
a hydromagnetic buoyancy force on the prominence loop. In turn, through the spatial
transmission of stress and the spatial transformation between magnetic and mechanical
stresses, the hydromagnetic buoyancy force is manifested as an externally-caused
gradient force of gas pressure in the prominence. The main constituent of the hydro-
magnetic buoyancy force is the diamagnetic force that amounts to the force exerted on
the currents in the prominence loop by the currents that sustain the bipolar magnetic
field.

Accordingly, the motion of an individual mass element of the prominence loop
consists of two parts: a translational motion shared by various mass elements and an
expansional motion relative to the centroidal axis of the loop. The translational motion
is driven by the hydromagnetic buoyancy force and the gravitational force. The
expansional motion is driven by the internally-caused gradient force that sustains the
pressure difference between internal and external gas pressures and the self-induced
Lorentz force that results from interactions among internal currents. In the special
situation of equilibrium, the gravitational force is balanced by the hydromagnetic
buoyancy force and the Lorentz force of helical magnetic field is balanced by the
internally-caused gradient force of gas pressure.

In this paper, we expound the new dynamical model of prominence loops with the
simplification that there is no variation along the axis of the prominence. The effect of
the curvature of the axis and the longitudinal stretching of the prominence in its motion
will be considéred in future work. Thus, the present treatment may be regarded as
dealing with the top portion of a prominence loop, which is represented by a section
of a straight flux rope of circular cross-section. The cylindrical symmetry is merely a
mathematical convenience. The realistic geometry of arbitrary cross-sections that
appear in the temporal change of the shape of a flux rope will be considered in future
work. The prominence loop is immersed in an arcaded bipolar magnetic field near the

solar surface. For the sake of simplicity, the loop will be assumed to have its axis aligned
to the magnuetic arcade.
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2. Currents and Magnetic Fields

We use cylindrical coordinates (z. g, ¢) with the z-axis aligned with the axis of the
prominence loop and the angle ¢ measured from the radial line in the upward direction.
The cross-sectional radius of the loop will be denoted Q. The whole space is partitioned
into three regions: an interior region g < Q occupied by the loop, an exterior region
q > Q filled by the surrounding medium, and a peripheral region ¢ = Q which is a thin
layer of negligible mass and concentrated current. The currents that flow in the exterior
region to sustain the bipolar magnetic field are the external currents. The internal
currents consist of the currents that are carried by the intruding prominence in the
interior region and the currents that are induced in the peripheral region. The immersion
of the prominence loop as an extraneous body in the magnetized medium of the solar
atmosphere causes the induction of polarization currents. The induced currents
maintain the magnetic separation of the internal and external field lines. By virtue of the
high electrical conductivity of the solar plasmas, the induced currents concentrate
spatially to form a surface current at the periphery.

By virtue of the interaction among the three current systems, there are several kinds
of field-line linkage. The field lines in the interior region are helical. The field lines in
the peripheral region are circumferential. Field lines in the exterior region are mainly
bipolar. The internal magnetic field is produced by the currents in the interior region
alone. This is so because the interior region is shielded from the effect of the external
currents by the polarization currents in the peripheral region. In other words, the
external currents and the polarization currents together produce a null magnetic field
in the interior region. On the other hand, the external magnetic field is produced jointly
by all currents in the exterior, peripheral, and interior regions. It is the sum of the
pre-existing magnetic field produced by the external currents and the perturbant
magnetic field; the latter is produced by the conduction currents carried by the intruding
loop and the polarization currents induced in the interaction.

First, we consider the pre-existing magnetic field produced by external currents. In
a two-dimensional treatment, the invariance in the longitudinal direction allows a
uniform longitudinal component in the magnetic field. The bipolar transverse com-
ponent of the magnetic field can be described in terms of a couple of line monopoles
as the source and sink of magnetic flux, in lieu of currents. This is merely a mathematical
expediency. The currents that produce the longitudinal magnetic field are very far away
so that the latter can be regarded uniform. Let the photospheric flux source of monopole
strength ¥,, be located at'q = a, ¢ = = — « and the photospheric flux sink of monopole
strength — ¥,, be located at ¢ = a, ¢ =  + « (see Figure 1). The distance a and the
half-angle « are related to the heliocentric distance r, of the loop’s axis and the

heliocentric half-angle 6,, subtended by the couple of monopoles by the geometric
relationships

sinoe  sind
a*=RY - 2Ryrycos by, + 13, —=_—"21

o) a



TYAMN YEH

Fig. 1. A prominence loop of circular cross-section above a pair of line monopoles.

The magnetic fieid associated with this source-sink pair has the flux function

b4 sing - asin{(n - «

2n gcos¢ —acos(n — )
oz Yy atn gsing ~ asin(n + ) ' (1)
2n qcos¢ — acos(m + a)

Thus, the pre-existing magnetic field, given by 1.B, . + 1, x (= V¢**?) can be written
as

B =18, + P Lolg +acos(¢p+ o)) - 1yasin(p+ )
! 2 qz + 2aq COS(¢ + o) + a’

L ¥, 1,lqg +acos(¢p - 0)] - 1,asin(¢ - =)
2n g* + 2aq cos(¢ — %) + a* .

@)

Here B, ,, denotes the uniform longitudinal magnetic field. The field lines are helical
arcs, with circular projections, from the flux source to the flux sink. At the site ¢ = 0,

where the prominence loop intrudes, the pre-existing magnetic field has the local
strength ’

B,=18.,+1,x1.B, 3)
with the transverse magnetic field given by

BLx=_‘Ifﬁslﬂ" 4)
T 4
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The associated magnetic pressure has the local gradient

<-\7-1- BZ) _p 2OOS% g (5)
2u o pua

We use here rationalized mks units with the magnetic permeability y = 4z x 10~7
henry m ~!. Here 1, is a unit vector in the ¢ = 0 direction which is opposite to the solar
gravity. We remark that the radius of curvature for the circular projection of the bipolar
field line that passes through the point ¢ = 0 is a/2 cosa.

Next, we consider the perturbation to the pre-existing magnetic field, caused by the
intrusion of the prominence loop. An axisymmetric distributed current carried by the
loop will produce an azimuthal magnetic field 1,,ul/./2nq outside the loop, as though
the total longitudinal current /. = {€ J, 2nq dg were concentrated at the axis g = 0. The
polarization currents induced at the periphery produce another potential magnetic field
in the exterior region. The latter perturbation is as though it were produced by a couple
of line monopoles located inside the loop. By the method of images, in analogy to image
charges in electrostatics, the photospheric monopoles + ¥,, atq = a, ¢ = = F ainduce
images consisting of monopoles of strength + ¥,, at the inverse points g = Q */a,
¢ = nF «a(cf. Yeh, 1988). From the flux function

. - . » _ 2 .
l//=& log l+£‘1|:am qsing-asing  qsing (Q /a)smot]+

27 qg 2 gcos¢ + acosa gcos¢ + (Q%/a)cosa
_ - . . 2 .
N ‘I’M[am gsing + asina —am gsing + (Q /a)sma]’ (6)
27 qcos¢ + acosa q cos ¢ + (Q3/a) cosa

we obtain the perturbed magnetic field

B=123 He |
2nq

=

+1¢

. ﬁ,{lq[q +acos(¢p + 2)] - 1,asin(¢p + %) N
2n q% + 2aq cos(¢ + %) + a*

", Lla™+ (Q%fa) cos (g + 2)] - 1,(Q%a) sin(9 + a)} .
q* + 2Q%/a)q cos(¢ + 2) + (Q*/a)®

o E’ﬂ{lq[q +acos(¢p - %)) - Lyasin(@ - %)
2n q* + 2aq cos(¢ ~ %) + a?

, Lalg + (Q%fa) cos(9 - )] - 1,(Q%@)sin(¢ - a)} | M

q* + 2(Q%/a)q cos(¢ - ) + (Q*/a)®
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The longitudinal component of the magnetic field is not perturbed.

The field-line topology of the transverse magnetic field, given in Equation (7),
depends on the ratio ul;/¥,,. In the case of I = 0, there are only a pair of X-type
magnetic neutral points, located at ¢ = Q, ¢ = = F arc cos[2(a/Q + Q/a)~ ' cosa] (see
Figure 2(a)). In the case of I # 0, there are additional neutral points in the
exterior and interior regions, besides the aforementioned pair. They stay on the
periphery if ul;/¥,, has a value between -4Qa sino/(Q? - 2Qacosx + a*) and
4Qa sina/(Q? + 2Qa cosa + a?) (see Figure 2(b)), and coalesce to be outside the
periphery otherwise (see Figure 2(c)). The additional neutral point in the exterior region
is of hyperbolic type, so that the two line monopoles are encircled by field lines in the

(@) (b)

(©) (d)

Fig. 2. Field line topology for the transverse magnetic ficld. (a) With [, =0, (b) with 0 < plg(¥), <
< 4Qasina/(Q? + 2Qa cosa + a?),(c) with ulz/ P\, slightly greater than 4Qa sina/(Q? + 2Qa cosa + a?),
(d) with pl,, 'P,, significantly greater than 4Qa sina/(Q? + 2Qa cosa + a*).
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distant region of large radii. On the other hand, the additional neutral point in the interior
region is of parabolic type if ul./¥,, is in the above-mentioned range (see Figure 2(b))
and bifurcates into a pair of X-type neutral points otherwise (see Figures 2(c) and 2(d)),
so that the line current at the center is encircled by field lines in the near region of small
radii. If [ulz/¥,,| is very large, the two neutral points outside the periphery will be on
the two sides of the line ¢ = 0 or m instead of on the line ¢ = 0 or = (see Figure 2(d)).
The above discussion includes the interior region 1 r the sake of global clarity.
Physically, Equation (7) is valid only for the exterior region.

To be in conformance with the accepted idea that the normal component of the
photospheric magnetic field is not altered by the coronal currents, we may include the
polarization currents induced on the photosphere (Kuperus and Raadu, 1974). This will
remove the additional polarity neutral lines, which appeared spuriously in Figure 2. By
the method of images the polarization currents on the photosphere amount to couples
of line current and couples of line monopole inside the cylinder whose surface represents
the photosphere. These induced photospheric currents together with all the currents in
the prorainence loop produce a magnetic field that has no normal component on the
photospheric surface. In turn, the photospheric polarization currents induce their own
image currents inside the prominence loop so that the magnetic field resulting from all
currents remains tangential on the surface of the prominence loop. The additional
induced currents in the prominence loop also amount to current couples and monopole
couples inside the prominence loop (see Appendix).

3. Hydromagnetic Buoyancy Force on a Prominence

The magnetized medium surrounding a prominence loop exerts its hydromagnetic
pressure on the immersed loop as an exiraneous body. The surface integral of the
ambient hydromagnetic pressure yields the hydromagnetic buoyancy force

2n

F=j —lq(mi Bi)Qd¢ ®)
0 24

on the immersed loop.
The ambient magnetic field at the periphery g = Q is

( 1 -a*sin(¢ + «
B,,(¢)=1:B,m+1¢{3lb : [ 0 s __,
sina{ Q° + 2Qacos(¢ + ») + a*

a?sin(¢ - «) ] . pIE} ©)

Q%+ 2Qacos(¢p - 2) +a*] 2mQ
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from Equation (7). Accordingly, the ambient magnetic pressure is

1 1 1 1 T —a®sin(¢ + %)

— B=—B_+— B + (10)
2u “ 2u ' 2u * sirlzal_Q2 +2Qacos(¢+ 2) + a*
2 . 2
a®sin(¢ - ) ] . Iz B, —.1—><
Q2 + 2Qacos(¢p — %) + d? 2nQ sin o

x[ -a?sin(¢ + %) . a?sin(¢ - =) ]+1 pl2
Q2+2Qacos(¢p+ x) +a> Q% +2Qacos(p- o) +a’] 2 2nQP

Only the two circumferentially inhomogeneous terms, one proportional tolcB, . and
the other proportional to B _, will contribute to the integral 3" - 1,3~ ' B3Q d¢for
the diamagnetic buoyancy force (Yeh, 1983). The former term yields 1,/z8, .. It
signifies the force on the line current that accounts for the conduction current in the
interior region exerted by the two monopoles that account for the external currents. The
latter term yields the force on the two image monopoles that account for the polarization
currents in the peripheral regin exerted by the two external monopoles (see Figure 3).
The result is a diamagnetic force in the direction of 1,. Its magnitude is

o)
Feo =B, +T 2% p 02 (11)
ua

per unit axial length. The geometric coefficient

2a°

) (@*>- 0% (a* - 2a*>Q?cos2a + 0%)

(12)

has the limitiug value of 2 for very small value of Q/a. This diamagnetic force can be
written

F = I x B, + r(-v zi Bz) Q2 (13)
] <

in terms of the current carried by the intruding loop and the pre-existing magnetic field
and magnetic pressure gradlent produced by the external currents. Here I = 1.1 is
the volume integral of the current per unit axial length. The azimuthal current densny
has a volume integral equal to zero. So does the volume integral of the polarization
currents. Inclusion of the polarization currents on the photosphere will incur an
additional force acting on the prominence loop. The additional force is essentially
Lul2/AT(r, - Ro). It is significant when the prominence loop is ciose to the photo-
sphere (see Appendix).

In addition to diamagnetic force the hydromagnetic buoyancy force also includes
hydrostatic and hydrodynamic buovancy forces. In the absence or neglect of motion for
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©

Fig. 3 Biot-Savart forces on the line currents and monopoles inside the prominence cylinder exerted by
the line currents and monopoles outside.

the surrounding medium, the external gas pressure is entirely hydrostatic. Hydrostatic
pressure impres ses directly on the periphery of an immersed body, without modification.
Thus, the ambient gas pressure is

P4(®) = Poo - P8Q COS D, (14)

with g = GM /rd being the gravitational acceleration at ¢ = 0. Here G is the gravitational
constant and My, is the solar mass. For our present discussion, we consider the situation
when the straight axis of the loop lies perpendicular to the solar gravity g= - 1,g. By
virtue of the hydrostatic relationship Vp*’ = p_.g between the hydrostatic pressure p‘,
the mass density p.. of the external medium, and the solar gravity, we obtain the
hydrostatic buoyancy force (Archimedes’ law)

F® = -p_gnQ?, (15)

from the integral {37 - 1_p,Q d¢. Itis in the direction opposite to the solar gravity. The

21



TYAN YEH
magnitude of this hydrostatic buoyancy force is

GM,

FO=p —= Q2. (16)

"0

4. Hydromagnetic Stress in a Prominence Loop

Now, we describe the helical magnetic field inside the prominence loop. The current in
the interior region must be so distributed that not only the current density but also the
solenoidal magnetic field are tangential at the peripheral boundary. In a straight cylindri-
cal region, an axisymmetric current density without a radial component will produce an

axisymmetric magnetic field without a radial component too. We consider the current
distribution

B q/Q
It produces the magnetic ﬁeld

1 qZ 1/2 1
B:(q) =1, J ulydg + 1, - JuJ:q dg = 1_B, (1 - —Q-—2> + l"E wlyq

1 0
’ (18)
with helical field lines. At the axis g = 0, where the azimuthal components of the current
density and the magnetic field are necessarily zero, the axial current density has the value
Jo and the axial magnetic ficld has the value B,. At the boundary g = @, where the
longitudinal component of the magnetic field is zero, the boundary magnetic field is

B = ﬂl_’f_ 19
s(¢) =1, 0 (19)

with
Iz =J,mQ2. (20)

The pitch angle of the helical field line, given by atn(B,/B,), increases from 0° at the
axis to 90° at the boundary.

The spatial transition between the ambient and boundary magnetic fields at the outer
and inner surfaces, respectively, of the thin peripheral layer is accommodated by the

polarization current. From the expression 1, x (B, ~ Bg), we obtain the surface density
of the polarization current

i,,=l:lB“°x
1

2a*(Q* + a*) cos ¢ + 4Qa’ cosa - lB
[Q2+2Qacos(¢—a)+a“][Q + 2Qacos(¢ + a) + a*] ¢u

{iee)

(21)
per unit length.
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The peripheral layer is a thin region of concentrated current without significant mass
accumulation. Its mass is negligible. so it cannot sustain a non-zero force. Accordingly,
the magnetic force associated with the polarization current must be balanced by the
mechanical force associated with the gas pressure because the gravitational force is nil

there. In other words, the hydromagnetic pressure is invariant across the thin peripheral
layer. Namely,

pat— Bi=pyt— B3 22)
2u 2u
Since the gas pressure in the exterior region is hardly perturbed by the intrusion of the
prominence loop, the ambient gas pressure is essentially equal to the pre-existing
external gas pressure at the periphery. The external gas pressure, even not perturbed,
may have a significant inhcmogeneity caused by the effect of the solar gravity.
Substitution of Equations (9), (14), and (19) into Equation (22) yields

1
Pe(®) =P — pogQcosg + o Bi, + (23)
B a2 2 3 2
L1 B2 _ .17 a?sin(¢ + a) .\ a®sin(¢ - %) ] .
2u sin®a{ Q% + 2Qacos(¢p + ) + a®> Q2% + 2Qacos(¢p — x) + a*

/- L[ -a?sin(g+a) . a2 sin (¢ — ) ]
20 ““sina| Q2+ 2Qacos(p+x) + a2 Q2 +2Qacos(p- )+ a]

Theim -al gas pressure varies from the boundary value p, at ¢ = Q to the axial value

Po at g = v. Thus. the spatial variation of the gas pressure inside the loop can be
accounted for by two parts:

pe = pE + pg. (24)
The externally-caused part,
F) Ftm)

(r=ry) -

nQ? nQ>
varies from the.value of zero at the axis to a circumferentially undulatory value

—(F) + F") cos ¢/nQ at the boundary. The internally-caused part varies from p,, at
the axis to py + (F) + FY) cos ¢/nQ at the boundary. It is well represented by

pEr= -

qcos¢, (25)

b b
- -

p;:->=po(1 - g—) + Py é‘z (26)

with

T)B=p0+_B%‘)’, (27)
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signifying the circumferential average of p$?. The externally-caused gradient of the gas
pressure provides the externally-caused mechanical force density

) (m)
F + L (28)
nQ? nQ?
that manifests the hydromagnetic buoyancy force. The internally-caused gradient of the
gas pressure provides the internally-caused mechanical force density

-Vpi =

~VpP=1,2 fléﬁ _Z_ , (29)

Accordingly, the resultant mechanical force density is

~Vpg = —png+IEXBﬁ°+r<-v 1 B2> -
TtQ2 2u £
- l,-1p2
+1q2 pO (p‘b+2“ B'Ioo)g_'
Q Y

The magnetic force density in the interior region is readily obtained from
Equations (17) and (18). The result

(30)

3, x B, = (E%l - pJ2Q> 1 31)
q 0

Y Y

indicates that the self-induced Lorentz force exerting at various mass elements of the
prominence is in the radial direction. Its magnitude is zero at the axis, where the
azimuthal components of both the current density and the magnetic field are zero. By
axisymmetry, the volume integral of the Lorentz force density is zero. This self-induced
magnetic force is the force exerted on a part of internal current by other parts of the
internal currents, without involving the external currents.

1
2

5. Motion of a Prominence Loop
We have partitioned the hydromagnetic force density acting at various mass elements

of a prominence loop into two parts:

fo= 10y + LH g- . (32)

The externally-caused force density

GM, . F&) 4 Fom

5

fo= -
0 Pe 2 an

(33)
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is uniform over the cross-section of the loop. The internally-caused force density is
proportional to the distance from the axis of the loop. The latter has the value

1,-1p2) = l,-1p2 1
f =2 Pot3k” Bo) Q(p’°+'“ B‘”)-EMOZQ (34)

at the periphery. In a similar manner. the velocity of a mass element of the loop may
be partitioned into two parts: '

up = Lug+ 1,V % . (35)

Here u, is the common speed of the translational motion and ¥ is the peripheral speed
of the expansional motion. The translational velocity is uniform over the cross-section
whereas the expansional velocity is proportional to the distance from the axis. The ratio

g/Q associated with an individual mass element is invariant in time. In accordance with
Newton's law,

d
pEauE'_'_va'*'JEXBE'*'/)Eg’ (36)
the translational motion of the loop as a whole is driven by the externally-caused
mechanical force and the gravitational force whereas the expansional motion of the loop
relative to its centroidal axis is driven by the internally-caused mechanical force and the

self-induced Lorentz force. Accordingly, the dynamical evolution of the prominence
loop is described by the equations

d

— Fy = Uy, 37

g 0= Yo (37)
d

Pe — Uo = Jo (38)
ds

for the translational motion and

d%.Q -V, (39)
Pe d% V=H (40)

for the expansional motion.

Additional equations for the dynamical evolution are provided by conservation of
mass and magnetic flux carried by the prominence loop and conservation of energy in
the physical processes involved. The mass of the loop is pz #Q? per unit axial length.
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Hence,

d 2
— peQ°=0. (41)
dt
It follows from Equation (18) that the longitudinal magnetic flux of the loop is 2B,1Q?
and the azimuthal magnetic flux is $1J,Q2 per unit axial length. Hence,

d

— B,0%=0, (42)
de
i Jo02=0. (43)
dz

As to the conservation of energy, the energy in a prominence loop increases or decreases
by the amount of energy gained or lost through energy transportation across the
peripheral surface and energy deposition to the volume. The former includes work done
by ambient pressure, heat transfer by thermal conduction, and longitudinal flow of
energy toward the footpoints of the prominence loop. The latter includes work done by
gravitational force, energy deposit by electrical current, absorption of irradiation,
emission of radiation, and deposition of mechanical energy. Upon the use of equation
of motion and equation of mass conservation, the equation of energy conservation

d o
d‘t”J(%”f““%Ps)d“%—uA-p,,dA+ j”(uE-pEguE-EE)dms

yields the entropy equation

(%JJJ 2ppdV + JJJ pe(V-us)dV =S8,

Here S denotes the net source term for all entropy-generating processes. By virtue of

7 -u, being equal to 20~ ' dQ/dt according to Equations (35) and (39), the entropy
equation can be written

oo 8 g ([ [tpaav=s

which is nbthing but. |
-4/3 d 3/1 1= 2+4/3
Q py (2(Gpo + 2PE)7Q*" 7] = S, (44)

since the volume integral for the thermal energy is equal to 3(5p, + iPs)n0Q>
The above eight Equations (37)-(44) serve to determine the temporal changes of the

eight variables: ry, u,, Q, V, pg, By, Jy, and p, in terms of the conditions for the external
medium. The latter are specified by p_, p., By, and B, ..
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The above analysis is done quantitatively for the case of uniform mass density in the
prominence loop. In reality, the mass is likely to concentrate in the pit of the helical field.
Spatial variation of the mass density can be accounted for by suitable modifications.
For example, the axisymmetric variation pz = po(1 - ¢%/Q?) + pgq?/Q? will incur the
following modifications. The quantity p; in Equations (33), (38), and (41) is to be
replaced by the average mass density pz = 3, + 3Pg, but the one associated with the
expansional inertial force in Equation (40) is to be replaced by 2p, + 2p,, which is
the average of pg weighted by ¢/Q.

6. Equilibrium Configuration for a Prominence Loop

A prominence loop in equilbrium with its surrounding medium has neither translational
motion nor expansional motion. In other words, the hydromagnetic buoyancy force
counterbalances the gravitational force, and the internally-caused gradient force of gas
pressure counterbalances the Lorentz force of helical magnetic field. From
Equations (38) and (40) with ¥, = 0 and ¥ = 0 we obtain

PE— P GMo r 2cosu

Jo = B, 45
° B.Loo rg ua * ( )
1 2 1 2 1 22

These two constraints are necessary for equilibrium. Any changes of the parameters
from the equilibrium values will initiate motion. Eruption of a quiescent prominence loop
is then described by the dynamical evolution given by Equations (37)-(44).

It should be remarked that inclusion of the mirror-current effect will modify
Equation (45) to

Gltfo 41B,_+T 2cosa

rs ua

—(Pg — Po)nQ?

B%  nQ*+

2
+ #12 RO

R __ 7
£ 213 - R)

This condition of equilibrium for no translational motion reduces to that obtained by
Van Tend and Kuperus (1978) in the limit of r, - Ry < R and Q < a.

7. Discussion

Prominences appear in various morphologies. They all involve a system of complex or
simple bundles of magnetic flux. We consider a prominence loop to be a flux rope that
intrudes into the solar atmosphere as an extraneous body immersed in a separately
magnetized medium. The time-scale of interaction between the two current systems is
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not long enough to allow magnetic interconnection between the two kinds of field lines
of different connectivity. The magnetic separation is maintained by currents induced at
the interface of the two flux systems. By virtue of the high electrical conductivity of the
solar plasmas, the induced currents concentrate spatially to form a surface current at
the periphery. This is in keeping with the cellular structures common in astrophysical
plasmas, with thin boundary layers separating plasma regions of widely different
characteristics. The polarization currents have paths separate from the two interacting
current systems. The spatial transformation between magnetic and mechanical stresses
across the peripheral layer of the polarization currents means that the plasma beta (viz.,
the ratio of gas pressure to magnetic pressure) can vary significantly from one region
to another region. With the gas pressure higher inside, the plasma beta can have a higher
value in the prominence loop than in the surrounding medium, although its value is likely
still less than unity.

The dynamical model of moving flux ropes presented in this paper is applicable to
the helical prominences observed by Vr$nak, Ruzdjak, and Brajsa (1988). It could also
be applied to flare loops. Recent observations obtained by the HXIS and FCS
instruments on board the Solar Maximum Mission spacecraft suggest that the hot loops
seen in X-rays are at much higher altitudes than the cool loops visible later in H-alpha
after cooling (Svestka et al., 1987). These post-flare loops are likely formed during the
process of flaring. Their descending motion is accompanied by shrinking in volume. It
would be of interest to explain the latter feature by the dynamics of flux ropes.

Appendix. Photospheric Effect

The presence of a prominence loop in the photospheric magnetic field involves the
interaction of two systems of magnetic fluxes. One of them is associated with the
currents carried by the prominence loop and the other with the subphotospheric
currents. In the interaction, polarization currents are induced on the surface of the
prominence loop and the photospheric surface so that field lines do not penetrate the
former surface and no additional field lines go through the latter surface. In other words,
the resulting magnetic field is tangential on the surface of the prominence loop and has
an unaltered normal component on the photospheric surface.

By the method of images (cf. Yeh, 1988), the induced currents can be accounted for
by current couples and monopole couples if we approximate the photospheric surface
by a cylinder. As shown in Figure 4, the conduction current I at ¢ = 0 induces a couple
ofcurrents: +Izatq = ryand - I atq = r, — R /r,. The image induces its own image:
-Igatq=Q%ryand +1I.atq=Q%(r, — R%/r,). The induction of images of image
yields a series of current couples:

+IE atq=b2" and _I’E atq=b2n+l, n=0,1,2,...

inside the photospheric cylinder and another series,

-1z at g=Q3?b,, and +I.at q=Q3%b,,,,, n=0,2,...,
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o

Fig.4. Currents in the interaction of two systems of magnetic fluxes. The source currents are represented

by aline current at the axis of the prominence and a pair of line monopoles on the surface of the photosphere.

The induced currents are represented by series of current couples and monopole couples inside the
prominence cylinder and inside the photospheric cylinder.

inside the prominence cylinder. Here b, is equal to ry, b, =ry— R%/r,, and
b, ., =ro— R3/(r, - Q?b,). These two series of current couples together with the
conduction current produce a magnetic field that satisfies the required boundary condi-
tions on the two surfaces of the prominence and the photosphere. Likewise, the pair of

photospheric monopoles + ¥,, at g =a, ¢ = nF « induce a series of monopole
couples:

+ ¥, at q=Q%¥a,, ¢=nFa,, n=012...

inside the prominence cylinder and another series,

+¥Y,atqg=a,, d=nFa,, n=1273...
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inside the photospheric cylinder. Here a, = a, oy = «, and

2 4

R
2 © cosf,,, + =2

= 2
@ =75-2n

2 b
rn+l rn+l
. Ry |r .
sina,,, ; = —=2*! sinf,,,, n=0,1,2,...
ay 4 -
with
2 Q4
Tawt =16 = 2rg =— COSQ, + =,
an an
2 2 4.2 2
re+r - Q%a ) Q%la, .
cos@,,, = +—=r*! %,  sinf,,, = " sina, .
2"0"n+l

n+1

These two series of monopole couples together with the pair of photospheric monopoles
produce a magnetic field that also satisfies the required boundary conditions.
The resultant magnetic field yields the ambient magnetic field

I
B, = l¢{2'u—§-+

+ 5 _;_1_15 Q + b,,cos¢ + —-ulg Q+b,,, cos¢p ]+
n=ol ® Q2+ 2Qb,, cosd + b3, n Q2+ 20b,,,,cos¢+b3,,

OOTM

—-asin(¢ + a,) N - ¥,

—-a, Sin(¢ - n) ]}
n=olL ® Q%+ 2Qa,cos(¢+ a,) + a2 n Q2+ 2Qa,cos(¢— a,) + a?

on the surface of the prominence loop. The integral [3* - 1,3~ 'B%Q d¢ yields the
diamagnetic buoyancy force

n=0 T4, m=0

F(m)=lr{1qum z SIna"[l'l"Qza,z‘ z (bzm_bznt,,_l)x

X arzz(bzm +”b2m+ l)‘+ 2aanmb2m+ 1 COS an - Qz(me + b2m+ 1 + zan COs an):l +
(Q4 - 2Q2ar1172m+ 1 COs o, + a5b§m+ l) (Q4 - 2Q2anb2m cosa, + asb%m)
1 o]

o
+- Y% Y - Q%,sing, Y a?sina,, x
“ n=0 T

m=0

a,a,, cosa, — Q2 cosa,,

+
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® 1 1 1 ®
+ ulZ Z ["( "_)'*' Q*(bay = bayry) Z (bapm = bapn i) X

n=0 2n b2n+l b2n m=0

(bZn + b2n+ l)meb2m+l - Qz(me + b2m+ l) ]}
(b2n+ lb2m+l - QZ) (b2nb2m+1 - Qz) (b2n+lb2m - Qz) (b2nb2m - QZ)

acting on the prominence loop. It is equal to the vector sum of the Biot-Savart forces
(see Yeh, 1983) on the conduction and polarization currents in the prominence loop

exerted by the conduction and polarization currents on the photosphere. From its
leading part,

3 32 cin2 2
lr[IE‘I’M sina. 1 w2 4a>Q? sina cos a s ul2 R% ]’
na p n(a® - Q02)(a*-2a*Q2cos2a + Q%) 2nrg(rd - R%)

it is seen that the additional force due to the photospheric effect is significant when the
prominence loop is close to the photospheric surface. The term proportional to /2
represents the mirror-current effect discussed by Van Tend and Kuperus (1978).
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Abstract. The occurrence of modulational instability in the current sheet is investigated. Particular attention
is drawn to the plasma micro-instability in this current sheet (i.e., the diffusion region) and its relation to
the flare process. It is found that the solitons or strong Langmuir turbulence is likely to occur in the diffusion
region under solar flare conditions in which the electric resistivity could be greatly enhanced by several
orders of magnitude in this diffusion region. The result is a significant heating and stochastic acceleration
of particles. Physically, the occurrence of soliton and strong Langmuir turbulence can be identified with a
sudden eruption of an electric current leading to a local vacuum in which an electric potential is formed
and results in the release of a huge amount of free energy. A numerical example is used to demonstrate the
transition of the magnetic field, velocity, and plasina density from the outer MHD region into the diffusive
(resistive) region and, then, back out again with the completion of the energy conversion process. This is
all made possible by an increase of resistivity by 4-5 orders of magnitude over the classical value.

1. Introduction

The solar flare has been recognized as a violent electromagnetic phenomenon accom-
panied with the release of a huge amount of energy (~ 1028-10°2 ergs) in a rather short
time (i.e., time-scales ranging from a few seconds to about a thousand seconds). Based
on both observation and theoretical study, it has been agreed that this release is derived
from the huge amount of energy that is stored in the various configurations of the
magnetic field (see Figure 1). It has been suggested that during the onset of a flare, this
stored free energy is converted into heat and kinetic energy of the particles through
magnetic reconnection. This process is believed to be triggered in a current sheet either
spontaneously by the resistive instability such as the tearing mode (Furth ez al., 1963;
Ugai and Tsuda, 1977; Van Hoven et al., 1980) or driven from outside when topologi-
cally separate flux systems are pushed together (Priest, 1983; Sonnerup, 1983).

It can be seen from the schematic magnetic topologies in Figure 1 that when the two
different polarity flux systems are pushed together (i.e., Figures 1(a), 1(b)), the region
near the X-point collapses and current sheets are then formed (Dungey, 1953;
Syrovatskii, 1966). When magnetic flux tubes are braided together (Figure 1(c)), no
equilibrium can be obtained in which the current sheets may also form (Syrovatskii,
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Fig. 1. Current sheet formation in variously-proposed magnetic topologies.

1978). However, when these flux tubes are twisted with the same dire<tion of neighbour-
ing flux tubes, then the current sheets can also be formed as shown in Figure 1(d).

Furthermore, the current sheet can be formed through ideal magnetohydrodynamics
(MHD) instability processes such as the kink instability as shown in Figure 1(e) (Spicer,
1977, Parker, 1979; Hood and Priest, 1979). There is one additional possibility: as new
magnetic flux emerges from below the photosphere (i.e., from the convective zone), it
will create a current sheet at the interface of the overlying magnetic field as studied by
Heyvaerts et al. (1977). Practically, the formation of a current sheet can be considered
to be a dynamic process; therefore, the concept of driven 1cconnection in a flare process
suggested by Sweet—Parker—Petschek seems to be a commendable one. Now, we shall
examine this model briefly.

As shown in Figure 2, a slow steady-state inflow (along the x-axis of two oppositely-
directed strongly-magnetized plasma flows), moves toward the current sheet. Sub-
sequently, a rapid outflow of weakly magnemtized plasma will be generated along the
sheet (i.e., y-axis). According to Bernoulli’s law,

2
Poo + =2 = Doy + 3P0 Vout 5
8n
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Fig. 2. Flare models, (a) Sweet—Parker model; (b) Petschek model. The resistive MHD region (with
dimensions L and §) is surrounded by the ideal MHD region everywhere else.

and thus the outflow velocity is equal to the Alfvén speed

Vac = .
Acw /—_—47:’):0

From the law of conservation of mass, we may write

5Vout = LVin’ (1)

where 0 and L are the thickness and length of the current sheet, respectively. The current
intensity within this sheet,

B
=L Wx3|~_c__=°.
4rn

dr 0
along the z-axis. Employing Ohm’s law, we get,

¢ B . B
- .30 =)= aEinsxdc = anutsxdc =0 '77: Vm ) (2)

with ¢ and ¢ being the speed of light and electrical conductivity. Combination of
Equations (1) and (2) yields.

4 -1/2
Vin = Voo [—" aLVM,] - Lo (3)
CZ
with R, being the magnetic Reynolds number.
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For a typical pre-flare state (typically taken to be: Ny ~ 2 x 10'* cm~3, B, ~ 500 G,
L~10%°cm, T~ 10*K, o~ 107732~ 105"}, V\,~28x 108cms~!), (then),
R,, ~ 3.4 x 10'°. However, the inflow velocity which represents the annihilation speed
of magnetic field becomes too small to explain the rising time of a flare (i.e., ~ 102-103 s)
as discussed by Parker (1963). In order to remedy this difficiency, Petschek (1964)
devised a new model referred to as the Petschek mechanism for reconnection. In this
model, Petschek introduced a slow magnetoacoustic shock to divide the flare region into
three parts: the outer or MHD region; the wave or jet region; and the diffusion region.
In the outer region, there is a strong magnetic field and slow speed flow. The wave region
is just the opposite where there is a weak magnetic field and high speed flow. The
diffusion region is a very small one such as 2y* x 2x* as shown in Figure 2(b) where
(1/2)L and (1/2)6 decrease to p* and x*, respectively.

Taking the compressible factor « = 1, the maximum annihilation rate could be com-
outed,

Vin = VAoo <§) {ln[ZRm(I/m/VAoo)z } -t x

~ 0,042V, ~1.02x 107 cms~!. 4)
The annihilation time becomes
LIV, ~10%s; )
the length of the diffusion region becomes
y* = c?/[810V s (Vin/Vac)?] ~ 83 cm, (6)
and the thickness of the diffusion region becomes
x* = (c*/4no)/V;, = 0.702 cm . 7

From these numerical results, we find that the model could match the rising time of
a flare. However, the dimension of the diffusion region becomes unrealistically small;
more specifically, the thickness (i.e., x*) becomes close to or even smaller than the
Larmor radius.

By taking the extreme compressible factor ato be 2.75 x 10~ as suggested by Parker
(1963), we find that ¥,, ~ 3.6 x 107 cm s~ ', L/V,, ~ 27.7s, y* ~ 2.43 x 10** cm and
x* = 0.199 cm. This implies that the diffusion region of a flare would be degenerated
to a point (i.e., the origin as shown in Figure 2) or the separator. Based on this idea,
a number of authors (Coppi and Friedland, 1971; Sonnerup, 1973) developed a simi-
larity solution which allows V¥, to approach the Alfvén speed (V, . ). Obviously, such
a tiny diffusion region is insignificant energetically and acts only as a source for
producing the slow MHD shocks. These slow MHD shocks create hot fast jets of
plasma with typically 2 of the inflowing magnetic energy being converted into kinetic
energy and 2 into heat as demonstrated by Priest (1983).

The above description is a modified Petschek model that has been developed for years
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when the original Petschek’s model confronted great difficulty since its presentation in
1964.

Another way to remove this difficiency is by introducing the tearing mode instability
into the flare rrocess. This instability can break the current sheet into small fragments
thereby reducing the length L and then increasing the annihilation rate (see Equation (3),
and also refer to Coppi and Friedland, 1971). Friedman and Hamberger (1968, 1969)
drew attention to the role of microturbulence in the current sheet; this additional
physical process may enhance the annihilation rate and provide a realistic physical
dimension of the diffusion region. Also, experiments indicate that the passage of a
sufficiently dense current through a plasma leads to microturbulence which obstructs
the electron drift and gives an anomalously small plasma electric conductivity. Thus,
as soon as the microturbulence appears within the current sheet, the rate of magnetic
diffusion greatly increases and would also give a reasonable physical dimension (i.e.,
thickness and length) of the current sheet.

In this study, we shall demonstrate that Petschek’s mechanism for reconnection
during the onset of a flare could be improved by introducing the microturbulence process
within the current sheet. In Sectior. 2, the theoretical model for Petschek’s mechanism,
in which strong microturbulence or modulational instability can occur, is described. In
Section 3, the governing equations for the modulational instability are presented and
investigated. The effect of solitons within the current sheet is discusscd in Scctiou 4.
Final remarks on our flare model are presented in Section 5.

2. Theoretical Analysis

In aflare region, the estimated initial state (as given above) are typically: plasma number
density N, ~ 2 x 10'* cm =3, B _ = 0.5 kG, characteristic length scale L ~ 10° cm and
temperature T, ~ 10% K. Within the current layer (i.e., B ~ 0), the total pressure balance
gives a plasma compression factor a = NokTo/N, kT ~ NokT,/(B% [87) ~
2.76 x 10~>. The Larmor radius of electrons (~mV , c/eB) for the magnetic field
strength of B~ 10 to 100 G is in the range of 0.4-0.04 cm. The thermal velocity
(Vy, = kTIm,)"?) is 3.89 x 107cms~'; electron plasma frequency w,, =
(4nN,e2/m,)"* = 2.52 x 10'° s~ !; and the Debye length A, = k7 ' (wave number cor-
responding to electron plasma oscillation) = Vr,/w,, = 1.54 x 10~ 2 cm. The classical
electric conductivity (o) depends on the electron-ion effective collision frequency v.q
which is the reciprocal of the Maxwellian relaxation time,
(¢, = /m, (2kT)*? (87n,e* InA)~ ! with InA = In[(kT)*2e~3(nn,)~ 2] ~ 9.8. Then
Vg = (1,) "'~ 1.9 x 10"s~ %, such that o= ne’/m,vg=2.62 x 10" T*?/In. Sub-
sequently, the mean free-path among particles is 4, = Vi/veg~ 1.9 to 7.8 cm.

It has been known that the validity of the magnetohydrodynamic approximation in
the current layer may be characterized by A > 4, > 1, with 4 and 7 being the charac-
teristic length and time in which plasma parameters may show significant inhomogeneity
(Boyd and Sanderson, 1969). Based on these characteristics, the classical Petschek’s
model cannot meet the described criterion wherein x* (the Petschek’s characteristic
length) ~ 0.2 t0 0.7cmand A< A, = 1.9~ 7.8 cm.

36




M. T. SONG ET AL.

One of the means to resolve this difficulty is to increase the effectiveness of the
resistivity (¢~ !). The description given in Equations (4), (6), and (7) indicates that, if
o~ ! were to increase by 4 orders of magnitude, then the critical spatial characteristics
x* and y* would be increased by the same order of magnitude without any appreciable
change of the inflow plasma velocity (V;,). Accordingly, this possibility would lead co
physically meaningful dimensions of the current layer in a solar flare process. That is:
x* would increase to 2 x 103 or even 7 x 103 cm, and y* would increase to 8 x 104
or even 8 x 108 cm. Now, the guestion is: can ¢~ ' be enhanced by 4 orders of
magnitude with a realistically physical process in the solar atmosphere?

Under a thermal equilibrium state, the resitivity (i.e., ~o~! = (m,/e?) (v.q/n))
depends on the temperature only. Thus, we may express (Vog/n)ierm, it terms of the
energy density W, of Langmuir waves at thermal equilibrium conditions, as

<V=ﬂ> S Mo %)3 kT
n /therm h nkBT VTe 2n?

_ 16 2e4InA ®)
Jm, kg T)?

If we consider that there is a turbulence of ion-acoustic waves whose energy density
is W* in the process, the effective ion-acoustic collision frequency between electrons and
ions can be expressed (Tsytovich, 1970) by

(), =) 55 () 2
R /ion-acoustic - 2\ n nkB T 2 \T, n /therm ’

f

where T, and T, are the temperatures of electrons and ions, respectively, and a is the
ratio of W*/W3, with W3 being the energy density of ion-acoustic wave at thermal
equilibrium (i.e., W = WhH(T,/T,)'?).

According to the order of estimation, it was found (according to the solar conditions
assumed above) that Wiinkg T ~ Wifnky T ~ 10~ 4. Under these conditions there
exists linear wave or weak ion-acoustic wave turbulence, the ratio of W*/nkg T becomes
10~ 2, thus the value of « could be on the order of 102. However, when the nonlinear
wave or strong turbulence is excited, W*/nky T could be unity and then x ~ 10%. This
implies, according to Equation (9), the resistivity (~¢~!) could be 10* orders of
magnitude larger than its classical value at thermal equilibrium when the strong
turbulence is excited. It is worth noting that Spicer (1977) has been able to show that
anomalous resistivity in the current layer can only be 10% (order of magnitude) larger
than its classical value.

The present proposed improved Petschek type flare model is similar to the work of
Coppi and Friedland (1971) except that we have included the strong turbulence effect
in the resistive region. Thus, the basic governing equation appropriate for this study can
be described by a set of two-dimensional time-stationary, MHD tlow equations such
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as,

V-(pV)=0, (10)

p(v- Vv = -V(c2p) + ! jx B+ uV2y + 3uV(V-v), (11)
¢

V-B=0, VxB=4—nJ, (12)
c

VXE=0, J=rz“<E+lva>, (13)

c

where c, is the sound speed (i.e., c; = \/;/;) being almost a constant except in the current
sheet. Since plasma turbulence exists in the current sheet, the resistivity (1) could not
be a constant. However, the electric field E (= ¥; B /c)Z and viscosity ( W) are con-
sidered to be constant. To seek a solution, we introduce the magnetic field potential and
velocity potential as:

py =V x s, B=VxA;

where

A=Ax, D2, Y=y »Z.

Thus the set of basic governing equations becomes,

[(V x W)V - V2 - 1497] (v X ‘“) + V:A VA4 +V(c2p) =0, (14)
P T
Z(D, V4 +v, B )+p '(VxY)x (VX A)=0, (15)

with D,, = nc?/4n.

Now, the task left for us is to seek a solution for this set of Equations (14) and (15)
with proper boundary conditions in both the ideal MHD and in the resistive MHD
regions, respectively, as shown in Figure 2. In the ideal MHD region the viscosity and
resistivity terms can be neglected; Equation (14) reduces to V24 = 0, because the terms
of V x y and Y(c?p) vanish thereby implying that the magnetic ficld must bc a potential
field (i.e., no current). If we regard p being constant or known, i can be solved from
Equation (15). This solution represents an asymptotic one in the outer region (i.e., ideal
MHD region). In the resistive region (| x| < 10% cm, | y| < 107 cm), the viscosity effect
is ignored because the density and turbulence are not strong enough in this region. With
this assumption, Equations (14) and (15) turn out to be three equations for three
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variables p, 4, and . Using the boundary conditions at the origin (x = 0, y = 0); p— ay,

2 N
A—>—l- a2[<—}i) -—(1+a{')<—f—)]b and Y- —-ayxy.
2 Ag e

Together with continuous properties at the interface between the MHD and resistive
regions, the inside solution can be coasistent with the outside solution. The asymptotic
features of B and V near x- and y-axis are shown in Figure 3. These solutions are similar
to those given by Coppi and Friedland (1971) and Vasyliunas (1975) except for the fact
that the present solution gives more realistic physical dimensions for the resistive region.
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Fig. 3. Magnetic field, velocity, and density profile transitions from the ideal MHD regton into the resistive
MHD region along the x-axis (i.e., y = 0). (a) B, profile (b) v, profile; (c) density p-ofiie. (See Secticn 4 for
details.)

3. Electrohydrodynamics and Modulational Instability in Current Layer

It has been pointed out by Alfvén and Carlquist (1967) that the necessary condition for
a sudden release of free-energy stored in a electromagnetic flow system is the requirement
that the average particle velocity should exceed the thermal speeds (i.e., v,, t, > vy, Up,)-
In the laboratory case, when electric current exceeds some threshold the interruption
of the circuit will occur, a situation which can lead to an explosion that destroys the
equipment. As discussed in the previous section, there exists a strong electric current
in the resistive region (i.e., the flare current layer). This situation allows us to apply the
EHD (electrohydrodynamics) and modulation instability in this region for our investi-
gation.

In order to carry out this study, we must distinguish the difference between two
characteristic scales in relation to these two methods (i.e., MHD and modulation
instability). When A ~ 10 cm, 7 ~ 1 s, the resistive region could be described by means
of an MHD model because small angle collisions play a dominant role in this region.
On the other hand, when 1~ 10~2cm, 1~ 10~8s, the resistive region should be
considered as a collisionless plasma. Since ¢, v,> vy, vr,, the effect of collisions (or
thermal motion) can be neglected compared with the coherent action produced by
self-consistent fields (Boyd and Sanderson, 1969). Thus, Viasov’s equation should be

used in the resistive region, namely,
F
Qf_+v§_f_+_f_¥= ) (16)
ot or m ov
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where the force F = E + (1/c)v x Bis produced by self-consistent fields. In such a case,
assuming a certain form (e.g., Maxwellian) of particle velocity distribution, the fluid
description is also meaningful (Boyd and Sanderson, 1969) by taking the first and
second moments of Equation (16). This procedure gives the conservation of momentum
and mass for electrons and ions, respectively, as

v. T,k

§!£+(ve-V)ve=—e— E ~ ¢ (VeXB)—-/ihvne, (17)
at me meC mene
- + Tk
X = S B x By - e gy (18)

m,- m,'c minl
e 9o nv) =0, (19)
ot
iy (nv)=0; (20)
ot

and the approximate energy equation for ions and electrons are
Die =7 ekB T, .n

e, e

The self-consistent field quantities (1.e., E and B) are given by Maxwell’s equations

V-E =4dne(n - n,),

VXE-= —1—02,
c Gt
21)
VxB=1z€+4—E e(ny, — nyv,),
ca ¢

V-B=0.

Under the flare conditions, there are accelerated ions having high speed (sound speed
¢, = (kg T,/m)"? ~9.09 x 10° cm s ~ ') in the current layer, thus, v, > v,,. Since strong
E_ .s.dc EXIsts, the electrons have velocity greater than 107 cm s ~ ', thus, these electrons
oscillate between groups of protons having high speed which may lead to fast fluctuation
of particle density. It is this fluctuation that produces very strong self-consistent fields.
In the meantime, it is necessary to distinguish the slow oscillation and slow time-scale
(wg, ') from fast oscillation and fast time-scale (¢, '). It is understood that electrons
can have both slow and fast time-scale but protons can only have slow time-scale. This
principle is needed to treat plasma turbulence and modulation instability (Hasegawa,
1975; Rudakov and Tsytovich, 1978; Li, 1985).

To analyze the set of Equations (17) through (21), we have assumed that the average
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of the fast component of a single quantity to be zero,

n=ng, n,=n, +nk,

(nf>=0,

n,-n,>=0, or n,=n,=ng,

Vo=V, + V], efy =0, (22)
V=V,

E=E +Ef, <(E)=0,

B=B/, (BI)=0.

Inserting Equation (22) into Equation (17), we obtain

-~

0
p (Ve + V) + {(Ves = VIV (Vs + ¥]) =

- - S (B +E)) - = (B 1/ X B) -

m, m,c
2k T,

- 228 g, 4 nf). (23)
m,n

Averaging Equation (23) over many fast time-interval of w;,', we find that

-

Z (V) + (Vg T, + COT W] =
!

e e kg
= - r ry _re7Be
=-—E -— (FxB

m, m,c myhg

Vn,, (24)
Physicaily, Equation (24) represents slow motion under the slow time-scale anu

- ((V,T-V)vfr> - (v x B>
m,c

4

represents the force produced by the fast oscillation of electrons. Subtracting
Equation (24) from Equation (23) gives the equation of fast component, v/ (see
Appendix A for details)

ol e . Tky

e [

AL YR TR M (25)
/ R

ct m m,n,
To obtaun this equatioi. the following conditions are used:

kk> 1. W~1. W.~10"2. (26)
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Obviously, the fast component magnetic field B is produced by the fast motion of
electrons v7. Using Equations (21) and (25), we found that

T A, T
_la_Bf_=vXEfT= _ﬂVx<G—VL>.
¢ ¢t e ot

Integrating the above equation we obtain

m,c

Bf = - —= V x (v]). 27)

Then the force term becomes

~ COF-TWEY = =

(FxBf) = =3V (v)?) .
m_.c

e

which is called the striction force (Rudakov er al.. 1978) or modulation force. Then
Equation (24) can be expressed by

ov e vwks T
&t (v, Iy, = - E, - LBl
ot m, m,n;

Vi, = 3V (V)% (28)

As there is no slow component of B, Equation (18) gives

M iy, Vy, = £ g, - ke, (29)
ot m; m;n,

Let us now examine Equations (28) and (29) to determine the conditions under which
v,s = v, and then modulation instability could occur. From Equation (25), it follows that

e

T r_ wt/2,.

vy Ef = Wf Ure s
m,w,,

Wi=(E]An)nksT,.

For strong turbulence, W/ ~1, then t/~3.69x107cms ' and E/=
1.77-177 statvolt cm " '. (These estimations are basedon 2 = 1, 107, n, = 2 x 100"
at T,, = 10* K, respectively.)

From Equation (29), we may estimate the slow scale component of ion speed as

e m
Cg ™~ ——— Er = W:l/Z \/_t’ Ure -
m,w,, m

1

If we take W, ~0.01, then ¢, > 8.6 x 10*cms ', E_~0.19-19 statvoltcm .
From these estimated values, it is obvious that expressions of Equations (28) and (29)
are compatible when V ((vf)*> and (3, T.kgz/m,n.)Vn, have the same order of
magnitude as (e/m )E., if we choose the length scale A(4 = k& ') adequately.
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For example, if we take k being 102 and 10* (corresponding to compression factor
xbeing 1 and 10 ~ %, respectively), k < k, which satisfies Equation (26) immediately. The
values for other terms are:

V TR ~ k(3.7 x 107)2 ~ 1.37 x 1017,

teleks g, _4s4% 107,
mens

£ E ~9.81x 10,

m,

In obtaining these results, we have chosen « = 1 and 7, = 3 (for strong tubulence).
According to these estimations, we should be able to choose

Vi.: = ve.: = v.\' : (30)
By combining Equations (28) and (29), we get

-~

et 0, = =T, + 2 T) Ky T
t

mn m;

m,

)

E(CHDN (31)
Let us return to Equation {26) and set

n,=ng+ on, with ny=const.|dn| <n,,
v = 3v(r, 1) e Tieret 4 v¥(r, 1) efret l (32)

E7 = 1E(r, 1) e~ /v 4 JE*(r, ) efre
By aid of Equation (25), Equation (31) becomes

0v,
- = - kB(AI‘e TL’ + 7 ]‘1)

V(on) e?

— VIE(r, )2, (33)
ot mnng  dmm,w,,

where 1 E(r, 1)]% = E(r, 1) - E*(r, 1) represents the square of the amplitude of the fast
oscillating electric field.

Observation of Equation (33) shows that the slow motion is controlled by the gradient
of density fluctuations and modulational force. Similarly, substitution of Equation (22)
into Equations (19) and (20) together with condition Equation (26) provides simplified
expressions for fast and slow components of particle density of the form

AT

ZL 4 div(nyT) =0, (34)
ot

oy g TyTy) =

—= +div(ny, + (nfv]))=0. (35)
ét
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Because n,v, > (nf va >, Equation (35) becomes

6_:15 +div(ny,) =0
ct

Using Equation (32), we obtained,.
d(on)
ot

+ nydivy, = 0. (36)

By use of Equation (27), the induced magnetic field BT could be estimated. such as,

~ (mcle)kV ] ~2 x 102-2 x 10* G for x = 1-107%, respectively. This condition
conﬁrms our previous descnpuon that the self-consistent fields in the current layer are
much larger than those outside. These values can be summarized as

ET~18-180,  Eoypge~03;
B/'T~ 104 . Bnulsxdc ~10-50G.

Since the fast oscillating electric field (E7) would propagate in the current layer, its
g f propag
propagation equation under the condition of Equation (26) can be expressed by

1 GEf  dne ror
VxBf=- L= (v +nfv, +nfvi - (nfvEy)~
¢ ¢ ¢
1 GEf dme .
- —L - — vl
¢ Ct ¢
Then
éBI  CEf ovl
~e*Y X (VXE) =V x —L =—L - dnen, L. 37)
ot ot” ct

The term v,T(Enr/c‘t) has been ignored in Equation (37) because it is much smaller than
n(cv /ct. Inserting Equation (25) into Equation (37), we obtain

E 2 ) Tk
—L + 2V X (VX Ef) + — dre ,Efr—’”"BV(V E))=0, (38)
ér? m, m

e

where —d4men/ = V-E/ (see Equation (21)). It could be noted that Equation (38)
represents the propagation equation for Ef.

Substituting Equation (32) into Equation (38) and ignoring the term
{(52E(r, 1);¢t3)e " (in comparison with the term: - 2iw, (CE(r. 1)/Ct)e "), we
obtain two equations to govern the fields E(r, r) and E*(r, r) with one being the conjugate
of the other. Thus. it is enough to write down one of the two as

; T,
di, BN L 9 (@ x B ) - 2Rl 9w

Ct m,

2 EM =0 (39)
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Finally, we obtain a set of equations (i.e., Equations (33), (36), and (39); Li, 1985) for
the investigation of the modulation instability in the flare current layer; the first two
equations being the conservation laws of momentum and mass, and the third one is the
propagation equation for the electric fieid. According to Vedenov and Rudakov (1965),
the criterion for the occurrence of the modulation instability is W/nkg T, > ¢(Ak)rZ with
&~ 1. Vedenov and Rudakov (1965) state that, when this condition is attained, the
striction force ( -3V (¥7"))) removes both electrons and ions from the density
rarefaction. This leads to an increase of the ‘lens effect’, thus more Langmuir waves will
be trapped and the striction force increases. Subsequently, the modulation interactions
begin to develop, which confirms our analysis as stated above that, when the particle
velocities exceed their thermal speeds and the electrons have great drifting velocity (as
high as their thermal speeds), then the electrons will oscillate among a group of protons
thereby leading to enhancement of the striction force.

At the onset of a flare, the effective electric field within the current layer approximately
equals the electric field outside the current layer (£, ,,,4.): namely,

= |E + ! VX B[~ E_ isqe ~l VinB o, ~ 0.33
c

c

E

effective

(where we took: v, ~ 107 cms~!, B, ~ 500 G), and then an electron will gain a
veiocity of 10" cms~' in a time-scale of w,' (i.e., (e/m,)E e W' = 6.3 x
10 cm s~ !). In the meantime, both electrons and protons have group velocity near
10° cm s ~!. Therefore, under these two conditions (i.e., large driven current, j = oE,,,.

sde and large ion speed, the modulational instability will occur in the flare current layer.

4. Soliton and Strong Langmuir Turbulence

We have made a more detailed numerical study of our analysis as it is applied to the
Petschek model (as modified by Coppi and Friedland, 1971). We show that the plasma
flow is first pushed along the x-axis into the resistive region where it gradually changes
its direction and, finally, is expelled (withe the required energy conversion) along the
y-axis with an Alfvén speed of about 2 x 108 cm s~ . In the MHD region we choose
the parameters (consistent with the above analysis) as follows: L = 10° cm;
B,=300G; v, = 107cms-'; T,=10*K; n,=2x 10" cm~?; 2 = 10° cm. Hence,
x* = x/A and y* = 1073 (y/A). Near the x-axis, we take

B, =B/l - y*/80)[1 - (4x*)~'].

ve= -1 - (4x*)" '],
Near the y-axis, we take

B, = (B/24)[1 + x**/80] [1 - (4y*)~'],

v = 24u,[1 + (dp*)~1].
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In the diffusion region, we choose: T = 10°K; ¢, =3 x 10cms~'; 4, =D, /c, =
24 x 10%cm; D, = nc*/dn=[10""); B=uBc,=10B,/3; p=v2v}pcit=
2.45 x 1073 cm 3. We also use the following approximate representations:

B, = L2B(x/4,),

B, = 0.2(10B,/3) (y/2.4 x 10%),

be= =, /2 (x/A,) [1 - 0.9(x/3,)?] 7",
be = /2 ¢,(0A) [1 = L2(y/2,)2]""

and

p=(P)[1 - L.2(x/2)* - 0.9(y/4.)*].

The resuits of our numerical experiment are shown in Figures 3 and 4 which show the
magnetic field, velocity, and density profile transitions. Figure 3 shows these transitions
along the x-axis (y >~ 0) as the plasma flows from the MHD region into the resistive
region toward the origin. Figure 4 shows the transitions along the y-axis (x =~ 0) as the
plasma [turns and] flows out of the resistive region back into the MHD region having
completed the flare energy conversion process from magnetic to kinetic and thermal
energies.

We have shown that the flow was first pushed along the x-axis into the resistive region,
gradually changed its direction, and finally was expelled along the y-axis with Alfvén
speed being ~2 x 108 cm s ~ ! (see Figure 4(b)). The effective electric field exists only
in the z-direction. (Note, as in the MHD region, the effective electric field disappeared,

(GAUSS)
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Fig. 4. Magneuc field, velocity, and density profile transitions from the resistive MHD region into the ideal

MHD region along the y-axis (i.e., x = 0). (a) B, profile: (b) v, profile: and (c) density profile. (See Section 4
for details.)
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thus there is no particle acceleration along the z-axis.) Thus, in a short time (~,” '),
electrons and protons will gain their velocities in Z -direction exceeding their thermal
speed.ie..t,> 107 cm s~ 'and v, > 106 cm s ~ !. Therefore, this induced driven-current
would cause the modulation instability to occur along the Z-direction within the current
layer of the solar flare. Since there is only a weak field (high B-plasma), it is permissible
1o treat this case as one-dimensional micro-instability problem. Thus. Equations 33).
(36). and (39) become

oo, _ _kg(3. T + 0 Ti) _5_(§_"_> e 9 |E(z, 1)i? (33a)
= i “ybt)1
ét m, dz\ny) dmm.w, 02
< (93> + =g (36a)
¢t \n, lor4
and
CE(z, - 02 E(z, om
_ 2lwpe GE(Z [) _ /ekB Te c A(’) t) + l w;eE(z' [) =1(. (393\)

ot m, 0z* ng

In order to seek a solution for this set of equations, we make the following substi-
tutions:

0
[=tor, Z=?0§, (_11"):;1-7 E(Z,t)=808,
o

with

ty = W' (my2m,) 7, T.(7. T, + 7 T) "

o = 0 (m2m) 7 T To + 7. T) 7 G Te + 2 T)m 3 2. (40)
= (@mm) T+ 5T) (G T) ™
g = 8[mng(m,im k(7. T, + 2 T) T~ '1"2,

5= (@dmim) G T, + nT) (R T) 7 G Te + 2 TYm ] >

After some mathematical manipulation, the dimensionless forms of Equations (33a),
(26a), and (39a) become

-~

v cn (e
- 1Gal )
¢t ¢ &
cn ct
on_ (+2)
¢t cé
fe e
i =—+—-ne=0. (43)
¢t O
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After elimination of v from Equations (41) and (42), we obtain

9*n  *n  0%*(ee*) ,
2 azz 2 (#4)
ot?  o¢& o¢

By observation, we realize that Equation (44) is the traveling wave equation; thus, the

real quantities n and ee¢* could be represented by a functional form of (¢ - u, 1) with

u, being the travelling wave group velocity. Thus, Equation (44) has a simple special
solution as

ee* = —(1 - ud)m, (45)

where u, can be considered as an undetermined integration constant. Inserting
Equation (45) into Equation (43) we obtain a nonlinear equation for dimensionless
electric field &:

A A2
igf+€7f+(l—uf,)"(88*)8=0, (46)
ét c¢¢”

where u, < 1, Equation (46) has a soliton solution (Li, 1985) of the form

W O L
= - —_— X
€ &y | coshe(E = uy 1) -

x exp[ = i(uy/2) (& - o) - i‘P])_ X

2
X exp {it[((,/Z)(l —ud)~ '+ (%) ]}, 47)

where {, and ¢ are integration constants. Physically \/C_l represents dimensionless
amplitude of fast oscillating electrical field, the initial phase. The term
(£,/2) (1 = ud)~" + (up/2)* = & stands for dimensionless frequency shift, that is, the
frequency of fast oscillation being w,, ~ 75 '®. From Equation (45), the density
fluctuation could be found as

v

= - 2 sech{(¢ - 1) [£y/2(1 - u2)]'2) . (48)

By examination of Equations (42) and (48), we found a solution for v, such as,

v = TR0 sech?{(£ ~ uy7) [(1/2(1 - ud)]V2) . (49)

1 = uj
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Before determining the parameters {, and u,,, we shall calculate the three conservation
quantities (Rudakov and Tsytovich, 1978) as follows:

N = J 88* dé9
3 *
H = J’ I:E (ai) + neg* + (n? + v?)[2] d¢&, ‘ (50)
0E\ o¢
*
p=_1. J [i(s 6—8-—8* 0—>+2nv]dg
2 o¢ 0

Inserting Equations (47) through (49) into Equation (50) yields
N =2[20,(1 - ug)]'2. (51)
2 , 1/2
H= - (—{- &P = 5ud) (1= ud)=>% + (L, /2) 2 u3(1 - u%)) . (52)
P=2/20ul - u2)"¥+ J20 up(l - ud)~ 12, (53)

N, H, and P represent the number of Langmuir quanta, energy, and momentum of this
soliton, respectively. Of all these the most important quantity is energy A which has to
be negative if the soliton is stable. Like an atom in which electrons are trapped around
the nucleus, it is just the negative energy which can trap particles within a soliton. From
Equation (52), this soliton stability condition becomes

\ 1
1 -5u;>0 or uy,<—= (54)

if {;» 1 (corresponding to strong micro-turbulence). Using Equation (40) and
W] =0.9 (or E/ ~ 1.77, 2 = 1), we can estimate {, as

-1
CI ~ (EfT)2 [647"10 <’&> kB(?e Te + 7 I’,)Z (}‘e Tc)— l] ~
m, .
~ [64(m,m,)]~'(0.9) ~ 25.88 .
In view of this result. it is reasonable to choose ., [ uy = 0.2. Determination of

these two parameters will enable us to calculate the structure of this soliton. Thus; the
propagation velocity of the soliton is given by

¥ i
uy — = up[(5, T, + 3, T,)/m,]"* = 0.2 (sound speed) ~ 2 x 105cms " .
To
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The dimension of this soliton is

N 0.277 .
2[2(1 - "6)/Cl]llzr() = wp—el (ﬁ> Cs ™~
2 m,
~ 1.01 x 1072 cm ~ 10 Debye radius .
The density fluctuation within the soliton is

on - C] 25 4me e Te + 71Tt
—~ T = ~0.11.
ny 1-u3 096 m, . T,

From these results, we note that oniy ~ 10% density fluctuation within an area of a
10~ 2 ¢cm sized box could produce strong Langmuir turbulence (soliton) whose energy
density of the electric field reaches a magnitude comparable to the order of the value
of thermal energy density. [t could be imaginable that there might be a much severe and
violent phenomenon if, somewhere, a local vacuum really occurred!

From the conservation laws (i.e., Equations (51) through (53)), it could be noted that,
when uy < 1, N ~ /T, and — H ~ {’®. This means that increasing u, diminishes the
absolute value of the negative energy of the soliton. Thus, the solitons tend to fuse with
each other and to be brought to rest independently of one another. In the case of the
fusion of two identical solituns hiaviig equal energy H,,, quanta numbers .V, and
amplitude (\/C—,)O, the characteristics of the soliton after the completion of the fusion
process will be:

Ny =2Ny, (SO =2/

and

[

Hy = - Y2 2/T0] (1 - 5ud) (1 - ud)" 2 = 8H,.

3

These results indicate that the soliton has gone through a transition process from a
higher energy state to a lower energy state. Hence, AH = 2H, - H, = - 6H,> 0. This
amount of energy can be converted into ion-sonic wave energy as has been demonstrated
by numerical computations (Degtyarev et al., 1976). These authors showed that the
fusion of solitons is accomplished by ion-sonic emission. Those solitons with \/K—, <1

do not fuse, and only those solitons with \/C_, 2 1 are able to fuse. They have been able
to show that the rate of fusion is proportional to \/C_, .

5. Conciuding Remarks

In this paper, we have presented a detailed account of micro-physical processes which
may enhance significantly the intensity of the flares over the level predicted by the
classical flare theory. These micro-physical processes are the soliton and strong
Langmuir turbulence. Overall, we may summarize as follows: when the condition for
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modulational instability is reached, three modes of turbulence may occur. These three
modes (soliton, free Langmuir waves, and ion-sound waves) will interact with each
other, each one being converted to the others (Rudakov and Tsytovich, 1978). It could
be noticed further that Langmuir waves can be trapped in solitons and that the energy
released during the fusion of solitons is essentially taken up by ion-sound waves with
only a negligible part of this energy being carried by free Langmuir waves (i.e., not
trapped in solitons). Apart from the fusion of two identical solitons with the emission
of ion-sound waves, there is a process in which ion-sound waves generated during the
fusion of two solitons could destroy the third soliton. Also, a single soliton can be formed
from a homogeneous Langmuir field accompanied by ion-sound emission which is
called soliton condensation (Rudakov and Tsytovich, 1978.). From all these theoretical
results, we may conclude that during the onset of a flare, when the converging particle
velocity reaches ~ 107 cm s ~ ', the modulational instability begins to grow, and a set
of solitons could be formed from the thermal Langmuir field. At the same time, the
ion-sound turbulence increases rapidly to a high level comparable with the thermal
energy density; W3 ~ nk, T. Because of creation of such strong turbulence, the resistivity
(¢~ ") becomes 4~5 orders of magnitude larger than the classical value. It is just this
large resistivity which leads to an efficient conversion process in which an adequate part
of the magnetic energy is converted to thermal energy, thereby illustrating the thermal
phase of the flare.

In the classical flare model, the diffusion region is unrealistically small thereby making
it very difficult to have magnetic energy converted to thermal energy. However, the
present model with finite size of the diffusion region (0.1 km x 10? km) plays a dual or
twofold utilitarian role; on the one hand, greater resistivity enhances the temperature
and, subsequently, enlarges the dimension of the diffusion region. Hence the efficiency
of the energy conversion will be enhanced. On the other hand, strong turbulent electric
field could accelerate particles stochastically. It has been pointed out by Sturrock (1975)
that, in the first phase of the solar flare acceleration process, one of the most favourable
mechanisms is stochastic acceleration with an RF electric field produced by plasma
micro-instability. Since there is a diffusion region in the present model which leads to
a much more efficient energy conversion process which also produces a high speed jet,

there is .10 need to demand the existence of slow shocks as required by Petschek’s
model.
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Appendix A

First we will prove that the inequality

o > ; nof| or 2 o, (A1)
ol léx; X;

is valid under the condition (26). The right-hand side of Equation (29) has the same

order of magnitude. so we can estimate v, as

ov, e e m
—-‘{ ~ Er or vy~ E: = — Wsllz Ure -
o m; m; @, m,

Similarly, we can estimate v7 from Equations (23)-(24)

owlr e . e
L~—Ef or vf~ El = W}p,, .

o m, m,w,,
Then
6_75 / _6 nv}- ~IE Wf— ”2,
otl] icx; k
A g
= / i o | ~ =2 [Wy(m,[m)]~ "7
atll 1¢x, k

If we estimate v, from (24)

ov e e m
—~-—=—E  for v~ E. = [— W\e,,.
m, m,

o m, e Wpi
Then
~ -~ "1/2
7|l /| ¢ k m,
Ij—/:—nv‘~—‘1[W‘—i:| .
|6el] |éx, k m,

Therefore, in order to satisfy (A1), it is enough to take

kyd> 1. We~1, W,~10"2
which is just the condition (26).
Inserting (22) into (19) gives
(A2)

IQ)

(. +nf)+ V-[(n, + nf) (v, +v))] = 0.

<D

t

After averaging over the time-period w,”! we obtain
on, o
=+ V- (ny, + (nfvI)=0. (A3)
ot
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Subtracting (A3) from (A2) gives

g; nE+ V- (0,97 + nTv, + nIvT = (nEVTY) = 0 (Ad)

Considering (A1) we can write

T
aai + V- (nv)=0. (AS)
t

Now, we simplify the representation of dv/ /Ct. Subtracting (24) from (23) gives

~vT
2L 4 (1, VW + 7T, + (1 TIVF = G TV =
gt

=Zf EfT——e—[v,xB}'+(vaxBfT)—(vaxBfT>]—

m, m,c

y T
- kel g1 (A6)
mens
Comparing the three terms -(ejm,c)(v] x Bf), —(e/mc)v] x B}, - {efini c) x
(vf x By with - (e/m,)E] and using Maxwell’s equation V x Ef = —c~'(dB]/ar),
we can estimate them as:
e
[l-ner
me

Similarly, the terms on the left-hand side of Equation (A6) compared with 5vfr /Ct can
be proved to be very small, using Equation (A1l).
Thus (A6) reduces to

\-—L(v}'x BY)

e

k
~kawy,' Wi, = - wit<l.
d

T

ov e Tk .
S o T _lete™B T
- - Ef — an .
(0]4 m m.n,
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Abstract. In this paper we investigate the effects of conaensation and thermal conduction on the formauon
of Kippenhahn-Schliiter (K-S) type prominences in quiet regions (QP) due to symmetric mass injection.
To implement this investigation, a self-consistent, two-dimensional, non-planar, time-dependent magneto-
hydrodynamic (MHD) simulation model 1s developed. In the model, we use various values of the injection
velocity. density, and magnetic field strength to determine the most favorable conditions for the QP
formation. Based on these simulation results, we find that the formation of a K-S-type field configuration
should be considered as a dynamic process, which needs both condensation and mass injection to supply
eaongh mass to maintain such a configuration to complete the formation process of quiescent prominence

1. Introduction

For decades. the formation of quiescent solar prominences has interested solar
physicists, and many physical mechanisms for the formation have been advanced. For
example, the formation of quiescent prominences by condensation from the surrounding
coronal material has been investigated by a number of authors (Lust and Zirin. 1960;
Field. 1965: Kuperus and Tandberg-Hanssen. 1967 Nakagawa. 1970: Raadu and
Kuperus. 1973; Hildner. 1974). Such a condensation is expected to o.cur because the
coronal plasma 1s in a radiatively unstable temperature regime (Parker. 1953: Cox and
Tucker. 1969: An et al.. 1983). When a density perturbation causes radiative cooling to
dominate in some region, the resultant net cooling decreases the temperature and
pressure in the perturbed region and causes material inflow to form cool dense plasma
material.

To date. most calculations of solar prominence formation. based on the assumption
of coronal condensation. have only utilized linear or guasi-lincar mathemaucal models
(Kleczek. 1958: Uchida. 1963: Raju, 1968). Some models utilized self-consistent non-
hnear magnetohydrodynamic models. but they dealt with very specific cases. Hildner
(1974) emploved the most sophisticated numerical MHD model at that ume and showed
that the local condensation 1s the key process for the solar prominence formation by
adopuing a parallel field configuration and ignoring thermal conduction. Low and Wu
(1981) studied anaiytically the nonhinear interplay between magnetostatic equilibrium

solar Phnvsacy 1250 277=293, 1990
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and energy balance and showed that the thermal conduction parallel to the field is
important for the energy balance in the Kippenhahn-Schliiter (K-~S) type prominence
sheet. The condensation of a coronal plasma may explain the origin of the cool dense
prominence material, but it still leaves a number of unsanswered questions; e.g., what
is the mechanism of prominence support? Why does a prominence form along only a
certain part of a neutral line? Furthermore, Saito and Tandberg-Hanssen (1973) showed
observationally that condensation of coronal mass alone cannot supply enough mass
for a prominence without collapsing a large part of the corona. The requirement for
continuous mass supply from the chromosphere to a prominence led Pikel’ner (1969)
to suggest a siphon mechanism for the prominence formation. Poland and Mariska
(1986) studied the siphon mechanism for supplying mass in the prominence formation
process using a one-dimensional flux tube model in which thermal conduction and
radiation are included. but the effects from the magnetic field configuration and the
MHD process on the condensation could not be accommodated properly. Recently, An,
Bao, and Wu (1988) and An et al. (1988) employed a self-consistent time-dependent
ideal MHD model (Wu eral., 1983) to study the prominence formation by mass
injection. They revealed the dynamic processes in the formation of the prominence field
configuration, but the plasma parameters (i.e., density and temperature) could not
match the observed values because of the limitation of the ideal MHD model without
condensation and thermal conduction. [n this paper, we shall present a two-
dimensional, non-planar, time-dependent, self-consistant compressible magnetohydro-
dynamic model together with radiative cooling and thermal conduction in a gravitational
field to investigate the roles of condensation and thermal conduction in the prominence
formation. We discuss the present model and the initial and boundary conditions used
for solving the model equations in Section 2. Numerical results obtained from the model
and physical interpretations will be included in Section 3. Finally, concluding remarks
concerning the model in both a mathematical and physical sense will be given n
Section 4.

2. Description of the Model

In general, to set up a simulation model for a physical system we need to consider four
parts: (i) mathematical description of the physical system of interest. (ii) appropriate
computational boundary conditions corresponding to the physical system to be investi-
gated. (iii) proper algorithm to execute the numerical computation. and (iv) the choice
of the initial geometric configuration and proper interpretation of the numerical output.

210 MATHEMATICAL DESCRIPIION

To consider the dynamical behavior of the prominence formation. we choose to use the
description of single fluid plasma theory. in which the theory of magnetohydrodynamics
can be utilized. It is believed that the basic physics in the prominence formation is the
interaction between the plasma and the magnetie field i a gravitational field with higher
order transport effects (1 ¢.. radiation and thermal conduction). Thus. we consider a
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compressible fluid (plasma). initially at rest, imbedded in z stratified solar atmosphere
with an arbitrary potentizi magnetic feic’. I addition. we aiso assume that the plasma
is optically thin so that it is cooled by radiation in which condensation may be formed.
The plasma is heated by absorption of mechanical energy; thermal conduction is
included. However, the electric conductivity of the plasma 1s taken to be infinite and
viscosity is set equal to zero.

The governing equations of this MHD model can be written as:

Py =0. (1)
cl

¢(pv) —_——

— + V- (pw)=-Vp+-J x B+pg, (2)
ct c

cp

P @) = v Tp (5= DIH - Qr - 0.1, 3)
Cct

B xwxB). )
ct

p=pRT. J=-—97xB. V:B=0. \5)

4n

where the symbols p, p, T, v, B, and g are the mass density \p = mn), pressure,
temperature, velocity, magnetic field. and gravitational acceleration. respectively. All
these quantities are space- and time-dependent except the zravitational acceleration. In
addition. J represents the electric current which is defined by Equation (3). The two
constants ; and R are the rauo of specific heat and the universal gas constant. The
independent vaniables are the spatial coordinates (1.e.. honizontal (x) and vertical (2)
coordinates) and ume (7).

For the closure of the problem. there are three more quanuues to be defined: viz., Q. ,
Qr. and H. Q_ represents heat conduction. The heat conauction parallel to magnetic
field is much larger than the heat conduction perpendicular to the magnetic field for the
magnetized prominence plasma. thus

QO =-7-(k7T). (6)

with ky, =k, T %erg K 'em 'S ' and &, being 10~ :n cgs unuts.
The quanuty Q,, represents the radiative cooling term +hich 15 chosen to have the
form

Qp=,n:T7 . (7

where 7,15 the electron number density  In the present approximation. 1t 1s simply equal
to p.m where m 15 the hydrogen mass. The constants 4, und z, define the temperature
dependence which 1s identical to the one used by Hildner 1 1974) based on the optical
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thin approximation given by Cox and Tucker (1969). The heating function, 4. is not as
well known as the cocling tunciion. Thus, we simply choose a heating function of the
following form:

Hy=Qro=16T5 - (8)

This choice assures us that in the nitial atmosphere there is a balance between heating
and radiative cooling at each point.

2.2. BOUNDARY CONDITIONS

It has been pointed out by Wu and Wang (1987) that the selection of appropriate
boundary conditions is crucial for the correctness of the physical solutions. Thus, in this
simulation study, seif-consistently posed boundary conditions were used, based on
projected normal characteristic boundary conditions (see Hu and Wu, 1984; Wu and
Wang, 1987). The procedures can be summarized as follows:

(1) Allthe characteristic equations are taken along the projected characteristics in the
n - ¢ plane, where n is normal to the boundary in question. In particular, those charac-
teristic equations along the outgoing projected characteristics for which the correspond-
ing characteristic velocity is pointing out of the calculation domain are identified with
the compatibility equations (Hu and Wu, 1984).

(i) For the lower physical boundary (as shown in Figure 1) used in the present
calculation, the maximum number of boundary conditions can be arbitrarily specified
to simulate the boundary disturbances. This number is equal to the number of incoming
characteristics which are those characteristic velocities pointing into the calculation
domain. Then. the given boundary conditions and the compatibility equations are
combined into a complete system to determine the values of all the dependent variables
on the boundary.

b N

SN\
7// AN AY

o N\ X

Fig. 1 Schematc representation of an imitial potential magnetic field with symmetric mass injection as
indicated by arrows and computational doman for the present study.
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(iii) For the computational boundaries. i.e.. the upper boundary and side boundaries
in the present study, we choose again according to the rules given by Wu and Wang
(1987). Atthe upper boundary. the non-reflecting boundary conditions are used: namely.
all the spatial derivatives of the dependent variables in the characteristic equations are
taken to be zero except those in the compatibility equations. Then, these non-reflecting
boundary conditions are combined with the compatibility equations to determine the
boundary values of the dependent variables. The side boundaries. as shown in Figure 1.
have been chosen to be symmetric for mathematical convenience and physical accepta-
bility.

2.3. NUMERICAL ALGORITHM

The algorithm used for this numerical simulation is the FICE (Full-Implicit—
Continuous—~Eulerian) scheme developed by Hu and Wu (1984). In the FICE scheme.
all the quantities excent the density (p), pressure. ( p). and velocity (v) are computed
explicitly through the values obtained at the immediate previous iteration step. Then.
these values are substituted into the pressure equation for the routing iteration until the
satisfactory results are reached. The detailed description of this scheme can be found
in the work of Hu and Wu (1984).

2.4. INITIAL CONDITIONS

Prior to the introduction of the disturbances at the lower boundary (i.e.. physical
boundary), the initial solar atmosphere is supposed to be in hydrostatic equilibrium with
a uniform temperature and is permeated by a potential magnetic field (i.e.. ¥ x B = 0).

Under these physical conditions. the analytic conditions can be found from the set
of governing equations (1) through (5) in two dimensions which have the following form:

Po=p e -(¢ RT): .
Ty=T, .
vy =0,
nx .
B, =B cos —e¢ ™20, (9)
2x,,
. TX -
B., =B sin ~—e ™
: .
=Xo
BH) = “ N

wherep o [ oand B are arbitrary constants of density | temperature. and magncetc field,
respectively. This intttal magnetie field configuration and computational domain are
shown in Figure 1.

In order to simulate the mass injection. we have preseribed a velocity along the field
lines in three grid points (see Figure 1) with a ume ramp of five time steps. Subsequently,
we have mamtained this preseribed condition throughout the caleulation.
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3. Resuits

It is understood that the physical parameters which have significant effects on the
simulation results are the initial plasma beta (i.e., the ratio of plasma pressure to
magnetic pressure, §, = 16mnykT,/B3), the injection velocity (¢,), and amount of mass
(p/p,) injecied into the system. Therefore, our calculations were performed for different
combinations of these parameters to study the role of condensation and thermal
conduction on the prominence formation processes due to mass injection as shown in
Figure 2.

All these calculations are based on an initial isothermal atmosphere in hydrostatic
equilibrium with a temperature of 10° K (i.e., T.), a number density at the lower
boundary of 5 x 10°cm ™2 (i.e.. p,), and with a dipole current-free magnetic field.
From these numerical experiments, we conclude that the best results for prominence
formation occur for the following physical parameters: f, =2 (i.e., B,=42g),
ppo=1.0.andr, = 10kms "' ie. pont A in Figure 2. These results for magnetic field
configuration, density contours, temperature contours, and velocity field at a time 6200 s
after the initiation of the mass injection as shown in Figure | are presented in Figure 3.
These results clearly indicate that a K-S quiescent prominence is formed; the magnetic
field configuration shows a pit above the neutral line where a high density (i.e., 12.5 times
higher than the original density) and cool (~ 90°, lower thar the original temperature)

\
Po
P
Po
Bo = 2-0
Bo=10
Bo=27F
P
po =1 O .
vo = 10kmis  vo=20kmis vg =30 kmis Vo

Fre 2 Three-axes (1, p o, ff,) representation ot the physical parameters for which numerical simuiations
were performed.
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material is formed. The cool dense material is formed by the condensation of surround-
ing coronal plasma as well as the injected plasma as exhibited in the veiocity field: as
the injected plasma starts to condense in the pit, the pressure deficit in the pit causes
the coronal plasma to flow into the pit and condense.

In order to show the role of radiation and thermal conduction in the dynamical
formation of the quiescent prominence we plot the density and temperature at the pit
as shown in Figure 3 as a function of time for various combinations of radiation and
thermal conduction; see Figure 4. The curves represented by 4, B8, C, and D are,
respectively, the computed results for MHD with no thermal conduction or radiation.
with thermal conduction only, (i.e.. [H - Qg], = 0) with radiation only, and with both
radiation and thermal conduction as noted in the caption of Figure 4. By comparison
of curve B with 4, we note that the heat conduction tries to smooth the temperature and
density profiles along the field lines, resulting in a lower density accumulation and lower
temperature drop in the pit than for the ideal MHD case. For both cases, the density
and temperature evolution are far from those of a prominence. If the radiation is
included in the model. the density and temperature are closer to those observed in a
prominence; density enhances more than 10 times (~ 10'' cm~?3) and temperatures
decreases ~ 100%, over the initial value (~ 10° K) in the pit. Again by comparing the
results of C and D, we find that heat conduction smooths the density and temperature
distribution along the field lines. According to these simula‘tion re<uits, there are no
doubts that radiation and thermal conduction have important roles in the formation of
prominence. In particular, the radiation is essential to induce the condensation, and
thermal conduction will modify the time-scale of the formation. We now may have a
general scenario of the formation of quiescent prominences based on mass injection
from the boundary with radiation and thermal conduction in our model. In the following
we shall describe some detailed physics which may be revealed from this simulation
study.

3.1. EFFECTS OF DIFFERENT INITIAL PLASMA BETA (16nn,k T,/ B3)

The plasma beta measures the relative importance of processes controlled by plasma
pressure and processes controlled by magnetic pressure. During the prominence for-
mation process with a fixed plasma pressure (i.e.. 1, ~ 5 x 10° cm ~* and 10® K) at the
lower boundary. it is necessary to have a proper magnetic field strength. in order for
a K-S-type quiescent prominence to form. If the field is too strong, the field lines cannot
bend enough to form a proper pit to hold the mass teing injected, and the injected mass
will fall back to the solar surface by gravitattonal pull. In that case a pit is not formed
at the apex: instead a loop 15 created. I the field 15 too weak. it does not have enough
strength to support the prominence material at the apex. Only for a proper value of field
strength will the K-S-type prominence form. After a number of simulation studies, we
present the field configurations and density contours with values of the plasma beta of
20 (4.2G), 1.0 (5.9G). and 0 7 (7.0 G) for the case of an injected mass velocity of
10kms ' and p'p, = 1.0 using the non-ideal MHD model in Figure 5. From these
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numerical results we observe that the magnetic field configuration and density contours
for 3, = 2.0 best exhibit the expected features of a K-S-:.pe prominence.

3.2. EFFECTS OF DIFFERENT INJECTION DENSITY (p p,) = ND DIFFERENT
INJECTION VELOCITY (1)

We have stated that the most favorable combination of =hysical parameters for the

formaton of a K-S-type promunence consists of a perizrbed density ratio of 1.0.

injection velocity (r,,) at {0 km s ', and a plasma beta. .., value of 2 0. In order to

65




S, T.WLU ET Al

demonstrate that the formation process is sensitive to these parameters. we have shown
the effects o' the plasma beta vaiue in the previous secuon. Now, we investigate the roie
of the pt urbed density ratio and the magnitude of the injection velocity (v,).
Figure 6 shows the magnetic field configuration. density contours, temperature
contours, and vectoral representation of the velocity field at 6200 s for §, = 2.0 and
ty = 10 km s~ ', with a perturbed density of 1.0 on the left (a) and 1.2 on the right (b).
It is immediately clear from these results that the case with p/p, = 1.2 does not lead to
a K-S-type prominence, but exhibits a non-uniform loop structure as shown on the right
side of Figure 6. This loop structure has high density at both legs and low density at
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the top. Observationally, it may reflect a loop having bright legs and less bright top.
Physically, it may be understood because we have injected more (20°, more than the
case shown on the left side of Figure 6) mass into the system. and because of the effect
of gravity on the condensation aiready triggered before the injected mass reaches the
apex as shown by the velocity field in Figure 6.

In Figure 7. we show the effect of the injection velocity on the formation process.
Again, the best physical parameters for K~S-type prominence formation are f3, = 2.0,
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pipo - 1.0,and v, = 10 km s = '. The density contours and vectoral representation of the
velocity distribution are shown in Figure 7. From these results, we recognize the effects
of the injection velocity by comparing the results shown in case (b) and case (c) in
Figure 7. where only the density enhancement in the low injection velocity case (i.e.,
r'= 10 km s ~ ') resembles the observed prominence features. It could be noticed further
by comparison of Figures 7(c) and 7(d) that if the initial field strength increases (i.e.,
B, decreases), the observed feature of prominence density distribution fails to appear.
Another important feature which could be seen by comparison of Figures 7(a) and 7(c)
is the injection density which shows that when we increase 20°; of the injection density,
it forms a loop instead of prominence.

To summarize the present simulation studies, we show that the best combination of
physical parameters for a K-S-type prominence formation is f§, = 2.0 (i.e., 4.5G),
plpo = 1.0, and ¢, = 10 km s ~ !, with condensation and thermal conduction processes

MAGNETIC FIELDUNE T = 6200 00 sec MAGNETIC FIELOLINE T =620000 sec

7 7 !
6 6 ;
5 5 \ |
4 4 \ 1
: i 1
2 2 |1
1 1

. 0 |

0o 2 4 6 8 10 12 ‘14 16 ("E4KM) 0 2 & 6 8 10 12 14 16 ("EdKMy

ONTOURS AT CONTOURS AT
8 A 2654001 al A 144003
- 8 2394001 .l 3 102+003
i C  212.00 / C 9104002
6 D 1864001 5 5 7964002
] E 1594001 5 E 5324002
4 £ *33.001 s F 5864002
G 106+001 ] G 4544002
3 H 7264000 3 H 3404002
2 I 5314000 2 . I 2264002
. J 2 65+000 . J 1124002
N & o} K -2 14.000
T6~ 1"E4KM) 02 a5 8 30 13 T 15 CEMM
JRS AT
PRESSURE (%4) T =A700 00sec PRESSURE (%) T = 6200 00 sec CONTOURS
CONTOURS AT A 5 884001
A 4734001 8 4.724001
8 B 4244001 8 c 3 564001
7 C 175,00 7 O 2404001
6 O 326+00t 6 £ 1 244001
5 A € 277.00% < ; 851.001
F 2284001
4 G 1794001 s G 1074001
3 H 1344001 3 . . H -2 234001
2 i 0054000 2 “ i ! -3 33400t
. P 1144000 . J -4 55+001
' K 1774000 K 5714001
0F 2 4 B 8 10 12 1416 CEKM 06 2 "3 & 8 10 12 14 16 (EKM)

@ )

Fig 8 Comparison between the results of magnetic field, density, and pressure contours obtamed from
the ideal MHD model (Jeft) and non-ideal MHD modet (right) at 6200 s after mass njection for f, = 2.0,
ppe=10,and % =10kms "

68




NSATION AND THERMAL CONDUCTION

ORMATION, CONDF

ROMINENCYT ¥

!)

[apotr (THIN

(Pxir3a)
100414 G-
100°5G -
100t6€E €
100+ €2 2-
100t ‘0 }-
100158
10002 1
100t v 2
100t95 €
100¢¢L ¥
100°88 S
1V "4NOLNOD

<CcO0QWUUOIT o o-X

.91 vt 21 oL 8 9 ¥ 4

[Bapl-uou uo paseq |, Sy (Of =

@}.\:
e
-,

I
L EgEe
b - s’
b .
~ -

<
(=]

DN~ OO TN -

205000079 1 (%) 3uNSS3IYd

()
0 D 286 = DOV XVIN ININOJWOD N

(risad. et ¢ 21 O 8 9 t 2 O

P T I R I
......;Il“”\|\.......
P e e L R T I N
L L T
[ LA B N R P A A
J Y I I
LT T T R I S S )
TR T T T P
PO N P I IR RS

0
L.
()
€0

=
v
s Q
9m
L%
8

935000029 ~ L Q1313 ALIDON3A

mopur g - %dog =

1000 - A

000+8E G-
100+LS €
000+89 ¥
000¢1L 6
100*Lv L

O —»>

)
(wue3d.ot P 21 00 8 9 ¢t 2 O
S
\....I."HunuunHuu“nHm.{..,/
/ 1 ] Mem~all
dé { ’ J
. -

10086 1
100¢8v 2
100486 ¢
100+6P €

100+66 €
LV SHNOLNO

E]
3
a
o}
8
v
o}

205 00 0085 - 1 (%) 3UNSS3IHI
d
(a)

070D 286~ DOVW XVIN LNINOJINOD N

wirad,et o1 21 0L 8 9 ¢ 2 O

.o.-'(lluu.-t\\-....
L NI I L R A T A A N
P i T L I
. . v P B I Y N
..\‘....-—————._.....
AR I N I N T T U U O,
PP 2 A I B T T T W O WO A
PR B I I T T W S N O
[P I 2 B B T T L U T S N PP
PP 2SI 2 B T T T U S S S Y]
PO T O 2 2 A A I U T U W WL W SRR R U}
IR 2 A A T U U W WO W U W B

205000085 ~ 1 Q1314 ALIDOTIA
A

-

QN0 VT MN O

DOV TON—O

IN3NONOD A

oo ts 8
000¢0+2
00046 €
000+rr S
0003959
0008t 8
100100}
100°S1 ¢
tootoE
tootor 1
1001
1V SHNOLNO

6 g
i)

(air3).9t 1 28 €L 8 9 ot 2 oo
t
<
€
p
S
Q
i
2

A5 00 0T ) 0t Y IMNSI

()

00D 286" DVIN XVIV LN3HOINOD N
bpMe3d.ot 1 2t Ot g 9 2 O
RS SRRV EEEREER
N LR [
DI s
LTIl oo €Q
N i)
R S O L L P ) m
LLliLiI il 3

9% 10§ uondafut sse U 01 NP oy sanssoad pur {1popA oY jo uennjoas prndwoe)

3
3
a
o]
=}
v
0

2S00 000¢ 1 QTR ALIDOY T




ST WU ET AL

in the model (i.e., non-ideal MHD model). As discussed by An. Bao. and Wu (1988)
and An eral. (1988) a K-S magnetc field conriguration can be formed without con-
densation and thermal conduction. However, the resulting dersity contours do not
resemble observations. These results for maenetic field configuration. density contours,
and pressure contours are shown in Figure 8 for models with and without radiation and
conduction.

Finally, we present the evolution of the vectoral representation of the velocity distribu-
tion and pressure distribution at various times (i.e., 2000, 5800, and 6200 s) in Figure 9.
From these results we noted two important features:

(i) The development of a low pressure region on top of the apex as shown in
Figure 9(f) may correspond to the cavity generally observed above prominences. Aiso,
we can understand the cause of the cavity as due to the condensation (see Figure 9(c)
because there is no locality. We raay notice further that this low pressure region is
created by both density depletion (~2",, Figure 3(b)) and decreasing temperature
(~91°;, Figure 6).

(i) The support of the prominence mass 1s due not only to the magnetic field but it
also results from the momentum due to the injected mass as indicated by the high
pressure contours on the lower boundary in Figure 9(d-f).

4. Discussior and Concluding Remarks

In comparison to previous studies of prominence formation, the present work incor-
porates the nonlinear dynamical effects of the magnetohydrodynamics together with
condensation and thermal conduction in a fully self-consistent treatment. In order to
sort out these complicated physical processes. it would be useful to estimate the
characteristic time-scale for each of the physical processes. Emploving dimensional
analysis for the momentum and encrgy equations (i.e.. Equations (2) and (3)), we obtain
the following characteristic time-scales-
Hydrodynamic time-scale,

212 .

{ = |: X0 :l _ Y
p= SRV

RT, ¢,

ragnetohydrodynamic (MHD) time-scale.

22 .

_ 47y X4y _ Yo
=1 — > = T

0 Cy

conducuon time-scale.

[ = Pao __ DoXg

(7-DQ., (y- Dk,J]*

radiation time-scale,
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lp= =———-— - = -

G- DQro (= DT
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condensation time-scale.

thc
cds — s

tR_t"

{

where ¢, is the sonic speed, ¢, is the Alfvén speed. and the subscript 0 represents the
reference value. In Table I, we present the results for these characteristic times for
various initial conditions. Only the magnetohydrodynamic time-scale is affected by the
plasma beta through the Alfvén time scale. The other time-scales are functions of plasma
properties and geometric length. These characteristic time-scales have important effects
on the determination of simulation time to assure meaningful physics and the under-

TABLE 1

Characteristic time-scales with an initial atmosphere characterized
by T=10°K,p,=835%x 10" "3 gem 3,1, =2 x 10*km

B 0.7 1.0 20

L, 170s 170s 1705
b 92s 110s 156's
3 8000 s

‘R 3200s

Legs 5400 s

standing of the sequence of the physical processes. For example, we note from Figure 4
that the density increases and the temperature decreases significantly after 3000 s for
the case where radiation is included. For the case of both radiation and thermal
conduction, the density increases and the temperature decreases significantly beginning
at ~ 5000 s. These two times correspond to our theoretically predicted radiation time
scale and condensation time scale, respectively, which implies that our numerical
simulation experiments behave properly. There are not any analytic results with which
to compare our simulation, but the agreements with the above-mentioned time-scales
may be considered to be an indication that the numerical results reflect correct physical
situations.

We now estimate the amount of mass being accumulated in the ‘pit’ and examine the
distnibution between the injection mass and condensed mass. The total mass in the
prominence can be obtained by numerically integrating the density distribution over the
area which is considered to be the prominence (i.e., the pit). We find the total mass to
be 6.4 x 102gcm ~'. Tne amount of mass which is injected into the computational
domain is 1.2 x 10° gcm ~'. However, not all of the mass can reach the pit which we
identify with the prominence material. If we assume that only one-third of this injected
mass reaches the pit, the amount of injected mass which can be considered as promi-
nence massis4 x 10% g cm ~'. Taking the difference between the total prominence mass
and the injected prominence mass to be the condensed mass from the corona, we find
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that the latter1s 2.4 x 107 gcm . Because this 1s a two-dimensional model. the third
dimension 1s arbitrary. If we take the length of the prominence to be 10° km. then the
total mass in this simulated prominence 1s 6.4 x 10'? g of which 37.5°, is coming from
the coronal condensation and the rest (62.5° ) 1s contributed by the injected mass from
below. This scenario may resolve a classical problem in prominence formation as
pointed by Saito and Tandberg-Hanssen (1973); 1.e., with the mass injection present,
the formation of prominence will not depend on the collapse of a very large part of the
corona.

In summary. we have presented a self-consistent numerial simulation model for the
understanding of the prominence formation process due to mass injection from the
chromosphere. This model is based on a two-dimensional. time-dependent magneto-
hydrodynamic theory with inclusion of radiation and thermal conduction effects. Based
on the results from this simulation model. we conclude that

(i) There is a unique combination of plasma beta. injection densityv. and velocity in
which a K-S-type prominence may form at the neutral line. This might expiain why
there is no prominence at every neutral line.

(ii)) The mass injection does not supply the entire prominence mass but triggers a
condensation of coronal mass to further supply the prominence mass.

(ili) The prominence mass is not only supported by the magnetic field but also by an
increase in the pressure gradient (see Figure 9) through the dynamic process of mass
injection. This may be considered baliistic support.

(iv) The combination of a high injection velocity and density with a small plasma beta
is an unfavorable situation for the prominence formation. Instead. we see the formation
of loops.

(v) The formation of cool prominence mass is due to radiation. and the thermal
conduction smooths the temperature distribution of the prominence along the field lines.

(v1) The cavity formation may be considered as a dynamical process which happens
because the surrounding coronal mass 1s condensed to the pit and there is not enough
time for mass to be supplied to replace the condensed mass as demonstrated in Figures
5(b) and 9(c).

{(vi) Finally. we should note that the siphon effect is another mechanism whicn could
get the mass into the pit because the creation of the cavity leads to an additional pressure
gracent. However. this effect is small in comparison to the condensation and mass
injection processes. since. the gravitational effect will enhance the process of condensed
mass falling into the pit. but 1t will curtail the siphon mass from getting into it.

We conclude that this numerical simulation study reveals situations that resemble
overall characteristics or 4 K=S-y pe prommence @ concern field conniguration. cool
mass. and coronal cavity.
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IT1I. MAGNETOHYDRODYNAMIC WAVES IN THE SOLAR ATMOSPHERE
It has been suggested that the coronal heating and solar wind

acceleration may be related to the MHD waves in the solar atmosphere. Either
to prove or to disprove these suggested concepts we have made a systematic
study on the propagating, reflecting and trapping of MHD waves in the solar
atmosphere. The results we obtained are not conclusive. Three papers. were
published in the Astrophysical Journal to report these resutls:

Magnetohydrodynamic Instabilities in Coronal Arcade in

Astrophys. J., Vol. 337, 989-1002, 1989,

Propagating and Non-propagating Compression Waves in an

Isothermal Atmosphere with Uniform Horizontal Magnetic

Feild in Astrophys. J., Vol. 344, 478-493, 1989.

Reflection and Trapping of Transient Alfven Waves

Propagating in an Isothermal Atmosphere with Constant

Gravity and Uniform Magnetic Field in Astrophys. J.,
Vol. 345, 597-605, 1989.
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MAGNETOHYDRODYNAMIC INSTABILITIES IN CORONAL ARCADES
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ABSTRACT

We have studied the MHD stability of coronal arcades with and without a detached flux tube using a
two-dimensional linear MHD stability numerical model. For the study, we computed two-dimensional magne-
tohydrostatic equilibria with and without gravity. We have also studied the effect of gravity, magnetic shear
(or field twist along a detached flux tube), and longitudinal wave number, n on stability.

We have found that a coronal arcade without a detached flux tube (or with all field lines tied to the lower
boundary) 1s stable for any magnetic shear and for any longitudinal mode. On the other hand. an arcade with
a detached flux tube is unstable for n = O perturbations and the instability mode structure and growth rate
vary depending on the field twist and longitudinal wave number n. All the equilibria we have studied are
stable to n = 0 perturbations.

Gravity has a stabilizing effect on the equilibria. The gravitational effect 1s measured by 4 (the ratio of the
standard arcade width to the gravitational scale height). As the 4 increases from zero to 0.2 the m = 0 trans-
verse mode growth rate decreases, but high m modes are stabilized. The equilibria we have studied are com-
pletely stabilized for 4 > 0.33. This study enables us to understand the stable nature of coronai arcades and

prominences, and gives us an insight into solar eruptive phenomena.
Subject headings: hydromagnetics — instabilities — Sun: corona

{. INTRODUCTION

The solar atmosphere exhibits various eruptive phenomena.
Solar flares occur 1n active regions with highly sheared mag-
netic fields of several hundred Gauss along a neutral line. A
very energetic solar flare is often associated with a prominence
eruption 1n an active region. In a quiet region, where the mag-
netic field strength 1s ~ 10 G, a quiescent prominence res:des
along a neutral hne for several days or weeks but can then
erupt without any advance warning. Various mechanisms have
been suggested for the onset of the eruptive phenomena. One
mechamsm 1s a critical shear beyond which no neighboring
solution exists. The lack of neighboring solutions beyond the
critical shear 1s considered to explain the onset of eruptive
phenomena (Low 1977). Another 1s reconnection between
emerging tlux and overlying magnetic fields which tniggers an
eruptive phenomenon (Canfield. Prest, and Rust 1974; Hey-
vaerts. Priest. and Rust 1974; Heyvaerts, Priest, and Rust
1977). A thurd 1s an 1deal MHD kink 1nstability which causes
an eruption of a magnetic flux tube (Moore 1988). In order for
the critical shear or reconnection to be a possible eruptive
mechanism the magnetic structure should be MHD stable
before re.ching the cntical shear or reconnecting. If not, the
magnetic structure would first be destroyed by fast MHD
instabilities. On the other hand. in order for an eruption to be
due to a kink instabiity, the magnetic structure should be
MHD unstable Here we conduct an MHD stability study as a
tirst step to the understanding ol eruptive phenomena. The
stability study also enables us to understand the stable nature
of quiescent prominences and coronal loops.

The stability of a coronal arcade with field lines tied to the
photosphere has previously been studied (Hood and Priest
1980: Birn and Schindler 1981: Ray and Van Hoven 1933.
Mighuolo and Cargill 1983; Hood and Anzer 1987) while

* NASA/Marshall Space Fiight Center.
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neglecting gravivy and sunplifying the field configuration to be
in cylindrical geometry. The simplified one-dimensional MHD
stability problem is extended to a two-dimensional MHD sta-
bility study by inciuding solar gravity. Low (1984) constructed
two-dimensional coronal arcades and studied the stability of
specific equilibria using the energy principle (Bernstein et al.
1958; Hain Liist, and Schluter 1957). Galindo and Schindier
(1984) also used the energy prnciple to prove that
Kippenhahn-Schluter type prominence field configurations are
stable to linear MHD instabilities. Melville, Hood and Priest
(1986) studied local modes analytically in two-dimensional
coronal arcades without magnetic shear. These studies are
restricted to the analysis of the stability of certain types of
equilibria. Recently, Zwingman (1987) and Galindo (1987)
developed numerical methods based on the energy principle
for the study of the linear stability of general equilibria. Zwing-
man studied the stability of a sequence of equilibria with
increasing pressure gradient for a given magnetic shear but
restricted the calculation to a two-dimensional perturbation.
Galindo studied the stability of several existing prominence
models but did not study how line tying, gravity, magnetic
shear, longitudinal wave number. and the surrounding
ambient plasma and magnetic field affect the stability. In order
to understand the nature of quiescent prominences and various
eruptive phenomena we have to understand the consequences
of these effects on stability. For the present study, we have
developed a linear MHD numerical model. Our numerical
model is different from the previous models in that we solve
time-dependent linecarized MHD equations as an initial
boundary value problem 1nstead of using the energy principle.
We have also developed a numerical magnetohydrostatic equi-
librium model for the computation of various equilibrium
imtial states. We will study the stability of equilibria with and
without a detached flux tube and with and without gravity for
various longitudinal wave numbers and various magnetic
shear.
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fI. NUMERICAL MODEL

We solve the time-dependent lineanized ideal MHD equa-
tions in dimensionless form:
év

Po::;=—ﬂvP|+Jo"B1+JIXBo+ng» (n

L1V (pon)=0. @
Cct
—E_?Tl+v'Vpo+FpoV'v=0.« (3)
B,
— =V x (v x By, 4)
ct
Vx B =J,, (5)
p=pT, (6

Here a subscript 0 indicates equilibrium quantities, a subscript
1 indicates perturbed quantities, and v, p, J, B. T, and p are
velocity, pressure, current density, magnetic field. temperature
and plasma density, respectively. In order to make the equa-
tions dimensionless we normalize », B, p, and p with Alfvén
velocity V,, Bo, Py . and p, at the lower boundary and time t is
normalized by the Alfvén transit time across the width of an
arcade. Lengths are normalized by the width of an arcade, and
g is the dimensionless solar gravity defined as g = if and
directed in the negative y-direction; I' 1s the ratio uf spevific
heats, 4 is the ratio of the width of a magnetic arcade to the
gravitational scale height, and B is defined by B = 4nP,/B}
(note that this B is one half of the usual plasma ). Since we
study the stability of two-dimensional magnetohydrostatic
equilibria with symmetry in the z-direction, perturbed quan-
tities have the fom:

fl(r’ t) =f(X, W t)elkz . (7)

By using equation (7) for the perturbed quantities in equations
(1)<5) we obtain real and imaginary time-dependent linear
MHD equations. The equations are integrated with time after
a velocity perturbation is given to an initial equilibrium. The
numerical method we use is essentially the same as that devel-
oped by Bateman et al. (1974) and 15 presented in the Appen-
dix. We reproduced the resuits of Bateman et al. for
verification of our numerical code. We calculate the linear
growth rate assuming that perturbed quantities have an expo-
nential time dependence. We integrate the kinetic energy, E,
over the whole computing domain and calculate the growth
rate at each time step using the equation:

o = [In E(t + At) = In E(1)}/At

until w approaches a steady value. Since the kinetic energy 1s
the square of velocity the real growth rate of a perturbation 1s
half of w.

Our problem s different from the problem of Bateman
Schneider, and Grossman (1974) 1n that we study the stability
of gravitationally stratified coronal arcades with field lines tied
to the lower boundary n an open space. We have to specify a
line tying boundary condition at th: lower boundary and an
open boundary condition at the upper boundary. and have to
add an artificial viscosity in the ;nomentum equation to sta-
blize 2 numerical instability which may develop in a gravita-
tionally stratified 1nitial atmosphere. The numenical treatments
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of line-tying, open boundary, and artfictal viscosity are pre-
sented in detail in the Appendix.

1. EQUILIBRIUM INITIAL STATES

We compute a magnetohydrostatic equilibrium for an iso-
thermal solar atmosphere by solving the force balance equa-
tion (we drop the subscript 0 for convenience).

BVp=Jx B+ pg. {8)

The vector form of the equation can be converted to a nonlin-
ear second-order differential equation by using

B=V x(A.e.) + B_e,. 9

Here A. is the z-component of the vector potential 4. The
differential equation (Low 1975) is

dB
VZ . . -Ay . padentt§ = .

A, + f(Ae + B, dA. 0 (10)

X 1
plx, y) = e“’[po + ﬁ Jf(A:)dA,] . (1

dB.

=—=VA. - 2
J, A A. xe, (12)

. dB,
J.=f(AJe™ ¥+ B.— = -V34,.
c=flA)e™ + B TE = ~ V4,

We solve equation (10) by specifying source funciions f{4} and
B.(A)as

(13)

f(A)=a’4., (14)
BlA)=7y(A,~A)*ford, <A, <1,
B{A,)=0for A, < A, , (15)
or
B.(A.) = constant. (16)

By A. we denote zero at the ends and the maximum at the
center of the lower boundary, and A4, 1s an input parameter for
localized magnetic shear. With the above source functions the
plasma pressure in dimensionless form becomes

plx, y) = e” (1 + 0.52%AZ/f) ,

if we assume that p(x, y) = 1 fory =0and 4, = 0.

The source functions (14) and (15) imply that the longitudi-
nal current 1s distributed over the whole arcade, with decreas-
ing magnitude with height, and the transverse current 1s
distributed locally to generate sheared magnetic field near the
neutral line. The value of 2 determines the magnitude of longi-
tudinal current and the non-force free component of magnetic
field, y determines the magnitude of magnetic shear. and A,
determines the locahization of the shear. For a given x 1n equa-
tion: (14) an increase of B. in equation (16) does not change the
transverse field, whiie an increase of ¥ 1n equaton (15) inflates
the transverse fizld lines. The i1sothermal equilibrium has a
density profile identical to the pressure protile. From equation
(17) we can see that the plasma pressure at the center of a loop
increases as [§ decreases, resulting in an increase of the density
in the detached flux tube. We compute two different equilibria
in the x-y coordinate system, one 1s a coronal arcade with a
detached flux tube and the other 1s without a detached flux
tube. These equilibria are shown 1n Figure 1. B, = 0 results in

(17)
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twisted magnetic field lines wrapped around the detached flux
tube shown in cross section in Figure 1a with the twist decreas-
ing as B. increases. For the equilibrium we use equations (14)
and (16) as source functions. Figure 1b shows a coronal arcade
without a detached flux tube, obtatned by using equations (14)
and (15). The magnetic shear increases with ; in equation (15)
until y reaches a critical value beyond which no neighboring
equilibrium exists. Qur equilibrium numerical code 1s a part of
the instability code with the same spatial algorithm and grid as
used in the instability code. We will study the stability of the
equilibrium shown in Figure | for different field twist and
magnetic shear to show how they affect stability.

We will also study the effect of gravity on the stability by
changing the vaiue of 4. For given source functions f(A4.) and
B(A.), the field configuration changes with A, as shown in
Figure 2. The size of a detached flux tube shrinks as 4 (or
gravity) increases.

1V. STABILITY

a) Without Gravuey

We first study the stability of a sequence of equilibria with a
detached flux tube (Fig. 1a) for a various longitudinal magnetic
field strengths, B.. and for various longitudinal wave numbers.
n. Here. the longitudinal wave number is defined as the number
of longitudinal wavelengths in the arcade length (L.) where the
arcade length is equal to the aspect ratio times the width of the
arcade. The longitudinal wave number n is expressed with
wavevector k as n = kL_/2n. We define the factor ¢ iv represen.

Vol. 337

the twist of a field line on a surface of a detached flux tube.

[, B.di
BA,)L,

Here. B, 1s the transverse magnetic field. The integration 1s
carried along a detached flux line of A.. If g 15 less (larger) than
1, the field line wraps the flux tube more (less) than one turn
along the length of the tube. For a circular cyhindrical piasma
pinch. the plasma 1s kink unstable for g < . ymplying that the
magnitude of g determines the stability As B, increases. the
magnetic shear of a field line tied to the photosphere and the
g-value of a detached flux surface increase. affecting the stabil-
1ty The relation between g and B, for the equihbrium of Figure
la 1s shown in Figure 3, which shows g at the center of the
detached flux tube increasing nearly linearly with B..

The first example we study is the stability under a purely
two-dimensional perturbation, i.e.. the n = 0 wave. We find
that the equiltbrium shown in Figure ta 1s stable to n=0
perturbations for all values of B.. Thus the equilibria we have
studied. including the equilibria shown in Figure 1b. are stable
to all two-dimensional perturbations. This result imphes that a
two-dimensional perturbation 1s not adequate for stability
studies of a two-dimensional equilibrium. and we do not con-
sider this case further.

Next, we study three-dimensional perturbations. namely
n # 0 wave numbers. Figure 4 shows the instability growth
rate w versus B, for n = | and 3. The dotted hne 1s for n = 3
and f§ = 1, the solid line 1s for 5 — | aud § = 1. and the light

4= (18)

2.0 T T T

1.6

121

0.8

04}

1 3

1 1

0 0.4

0.8 1.2 1.6

Bz

P16, 3—The value g detinea in cg (1%)vs B. for the ecauiitbrium of Fig 1o Tae value at the center of the detached flux tube 154,



No. 2. 1989

solid line 1s for n=1 and § =0.1. It can be seen from this
figure that the growth rate versus B_ for n = 1 is much smaller
than for n = 3. We will discuss these results in some detail.

Let us first examine the n = 1 mode. The growth rate for
n=1and g = 1t (Fig. 4. solid line) shows that for B, lower than
06 (or for q lower than 0.68), the equilibrium 1s unstable. The
veloaty structures for this perturbation are shown n Figure 5
for different imitial perturbations but the same B.. Figure 5a is
for a random velocity perturbation, Figure 5b is for a sym-
metnic v, but antisymmetric v,, and Figure 5c is for a sym-
metric v, but antisymmetnic ¢,. Figure 5a shows that the
random perturbation produces an asymmetric unstable mode
structure, a surprising result because the mitial equilibrium 1s

MHD INSTABILITIES IN CORONAL ARCADES

symmetric. If we combine the mode structures of Figures 5b
and 5c, we see that the resultant mode structure is similar to
that of Figure 5a. This figure thus implies that when we give a
random perturbation, the two different modes of Figure 5b and
5c become the most unstable modes. producing, as a conse-
quence, an asymmetric mode. We have checked the growth
rate of each mode and find that the growth rates are the same
for all three. We aiso notice that the initial perturbations of
Figures 5b and 5c cause a faster approach to the linear growth
rate than the random perturbation does. In most of this study,
we use the perturbation of Figure 5¢ rather than the random
pe turbation, to reduce computation time. In analogy to the
m =0 mode 1n a circuar cylindrical pinch (Bateman 1978,

1 T ' m
s~ e [} = 1
s N ———— =3
® \ =
\
\
\
\
\
1.5p Y 4
\
\
\
\
\
\
\ e
~
AN
\
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1.0+ -
Y
0.5¢+ -
1 1 i
0 05 1.0 1.5
87
fio 4 —Growth rate w versus longitudinal magnetic neld 8. for longitudinal mode numbers n = | and n = 3 and jor 4 = O The dotted lin¢ 1s for n = 3 and the
solid hinetstor n = | Forthetwocurves § = 1 Thelightsold inesstorn=land 8 =01
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(@)

Chap. 6), we call this the m = 0 mode since it has no nodal lines
in the x-y plane. For a cylindrical pinch, m represents a polot-
dal harmonic mode number which does not exist in this two-
dimensional equilibrium configuration. When we say m =0, 1,
etc. 1n this study, we mean that the mode structures are similar
to the m =0, 1 (and so on) modes in a circular cylindrical
pinch.

Figure 4 shows that the n = 1 mode is again unstable for
0.8 < B, < 1.5(0r0.9 < ¢, < 1.7) and the unstable mode struc-
ture is similar to the m = 1 mode of a circular cylindrical pinch
as shown in Figure 6. This figure shows a tilted pair of vortex
patterns, for a random perturbation (Fig. 6a), and a symmetric
vortex that is localized in the detached flux tube for the pertur-
bation used in Figure 5¢. The mode structure shown in Figure
6b is a typical m = 1 mode in circular cylindrical pinch. The
m = | mode is called a kink mode and is suggested to cause the
eraption of prommences (Sakurai 1975). The m =0 and |
modes are separated from each other by a stable region where
0.6 < B, < 0.8. Figure 4 also shows that the growth rate for
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Fig §—Veloaty fields for the m = 0 unstable mode for different initial perturbations (a) random perturbation, (bjv, 1s symmetric andr, 1s anusymmetric, and (¢)

t . 1s antisymmetnc and ¢, 1s symmetric. (a) and (b) show plasma moving fast along the lower boundary, even though line-tying boundary condilion 1s given, because
the field lines are detached from the lower boundary.

B = 0.11s one third of that for § = 1. The lower growth rate for
# = 0.1 is due to the density for § = 0.1 being 10 times that for
B = 1 at the center of the flux tube (see eq. [17]).

The n = 3 mode 1s shown 1n Figure 4 to have several times
the growth rate of the n = i mode. It 1s ~4 times higher than
for n=1 for B, =0, but decreases rapidly to zero as B,
increases to 1.5. When B, incfcases from zero to 1.5 the
unstable structure changes from an m = 0 mode to an m =3
mode continuously, without being separated by a stable region
in B,, which is a striking difference from the n = 1 mode. Since
the n = 3 mode has a higher growth rate than the n = I mode
for B, < 1.5, a loop will eventualiy be subject to the n =3
mode rather than n = | mode for a random perturbation in a
longitudinal direction. This result imples that any prominence
eruption is caused by higher n kink modes than n = 1, which
seems contradictory to observations.

Figure 7 shows the growth rates versus n for B, =1 (or
do = 1.14). As n increases, the growth rate increases until
n =34 and then decreases for n > 3.4. The mode structure
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®
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n
F1G. 7—Growth rate vs longitudinal mode number n, for B, = | and 4 = 0 The longitudinal mode number 1 1s usually an integer number, but we can also take a

real value because n = kL., 2 and the wavevector k can be any number

also changes from an m =1 to an m = 4 mode continuously
for mcreasing n. The mode structures for n > 2 are shown 1n
Figure 8. The number of vortices increases as n increases and
the modes are more broadly distributed in the upper region
than near the lower boundary. The high m mode structures are
similar to the ballooning modes 1n a tokamak (Bateman and
Peng, 1977). which are strongly localized near the outer surface
of the tokamak. The ballooning mode is considered dangerous
to tokamak stability because of 1ts mode tructure. The implica-
tion of the ballooning-type mode structure shown 1n Figure 3
on the stability of a coronal arcade with a detached flux tube is
not obvious.

Next, we study the stability of a sequence of equilibria not
having a detached flux tube (F1g. 1b) in the presence of increas-
ing magnetic shear. Since we specify B_(A.) rather than mag-
netic shear. the sequence of equilibnia does not necessarily
correspond to quasistatic shear motion (Jockers 1976, 1977).
However. the increase of y in equation (15) does cause a
monotonic ncrease of the shear. We find that the sequence of
equilibna are all stable for y less than the critical value over
which no neighboring solution exists, implying that quasi-
static evolution s possible up to a critical shear without any
instability. Since no MHD nstability s found during the
quasi-static evolution. the critical phenomenon 1s a good can-
didate for indicating the onset of eruptive phenomena. This
study could be further extended by studying the stability of a
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sequence of equilibria with a specified continuously varying
magnetic shear, rather than specified B.(A.).

b) With Gravity

In § IVa, we have studied the stability of magnetic arcades
without gravity. This is a valid approximation when the gravi-
tational scale height 1s mucn larger than the typical size of a
magnetic arcade. For a coronal arcade (or loop) with
T =2 x 10® K. the gravitational scale height is H, ~ 6 x 10*
km. On the other hand, the height of a coronal helmet streamer
1s ~6 x 10° km, of the hot loops connecting two ribbon flares
is ~10% km, and of a coronal X-ray loop is ~ 10* km (Priest
1984), which correspond to 4 values of 4~ 10, 2 and 0.2,
respectively. For a solar prominence with T = 10* K, the scale
height 1s H, = 3 x 10 km, much smaller than a mature
quiescent prominence height of 5 « 10* km, which corre-
sponds to 4 ~ 100. These estimates of the heights imply that
gravity cannot be neglected in all stability studies.

In § 11, we defined dimensionless gravity. g, as ¢ = if. For a
given f§ value, the effect of gravity varies with 4. In order to
understand the effect of gravity on the MHD stability we use
vartous 4 values and study the stability of a coronal arcade
with a detached flux tube. Figure 9 shows the growth rates
versus B, of the n = | and n = 3 modes for 4 = 0.1. The resuits
should be compared with Figure 4 for 4 = 0 to understand the
effect of gravity. This comparison reveals the stabilizing effect
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of gravity. For n = 1. 4 = 0.1 reduces the growth rate to half of
that for 2 = 0. and widens the stability region between the
m=0 and m =1 modes from 0.6 <B.<0.8 for i=0 to
0.4 < B. <09 for 4 = 0.1. For n = 3, gravity has a significant
stabilizing effect especially on the m > 2 modes. Figure 4 shows
that the mode structures for n = 3 with B, > 0.9 are m > 2
modes and these high m modes are completely stabilized by
gravity. Since gravity stabilizes the n =3 but not the n =1
kink mode for B, > 0.9 we might see the eruption of a flux tube
due to the n = 1 kink mode for a randdom perturbation 1n the
longitudinal direction This is an important difference from the
4 = 0 case. in which the n = 3 mode dominates over the n = |
mode for all B.!

Since + =0.1 15 unrealistically small for coronal arcades
{~# > 1) and quiescent promunences (4 ~ 100), we have also
studied the stability for larger values of 4. Figure 10 shows the
variation of growth rates for n = | and n = 3 modes versus /4
The dotted Itnes are for the n = 3 modes. and the solid lines are
for the n = 1 modes, with B, = 0.2 or 1.0 as indicated. Since the
n =3 mode has 1ts largest growth rate at 8, = 0.2 and the

n =1 mode has 1ts largest growth rate (for the kink mode) at
B. =1, Figure 10 provides a very useful illustration of the
overall stability change due to increasing /. Considering only
n =3, as 4 increases the growth rate for B, = 1.0 decreases to
zero at 2 = 0.09 while the growth rate for B, = 0.2 decreases to
zero at 2 = 0.33. For 4 < 0.09, the growth rate for B, = 1.0 1s
much lower than for B, = 0.2. For n = 1. the growth rates for
B.=0.2 and 1.0 both decrease to zero for 4 near 0.2 and the
difference between the two growth rates 1s not as large as for
n=13. As 4 increases from zero, a detached fiux tube with
B. =10 is soon stabilized against the n =3 mode but 1s
unstable to the n = 1 kink mode until 4 reaches 0.2. For B, =
0.2, the n = 3 mode dominates the n = | mode for / < 0.33 and
the transverse mode structure 1s the m = 0 mode. These results
imply that if a detached flux tube has highly twisted field lines,
the ioop can disintegrate due to the n = 3.m = 0 mode for
45 0.33. but the tube 1s stable for » > 0.33. If the tube has
twisted field lines of one turn along the tube length (1e., B, =
1.0) the tube can erupt due to the n = {:m = | kink mode for
01 </ < 0.2 but will be stable for 4 > 0.2,
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while the n = 3 mode 1s stabilized by gravity.

V DISCUSSIONS AND CONCLUSIONS

We have studied the MHD stability of coronal arcades with
and without a detached flux tube by using 2 two-dimensional
linear MHD numerical model. For the study, we construct
two-dimensional magnetohydrostatic equiibria with and
without gravity with symmetry along the z-direction. We study
the stability for different longitudinal wave numbers, n. For a
given n, the transverse mode structure 1s represented by mode
number m. The mstability structure 1s found to vary, depending
on the magmtude of B, which determines the degree of field
twist and magnetic shear.

In the zbsence of gravity. we have found that a coronal
arcade without a detached flux tube 1s stable for any .uagnetic
shear less than a cnitical value. above which no neighboring
solution exists. Furthermore, all the equilibria we have studied.
even those with a detached flux tube are stable to two-
Jdiniensional perturbations for any B.. However. three-
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dimensional perturbations are unstable for equilibria with
detached flux tubes and we nnd that the n = 3 modes have
higher growth rates than the n = | modes for all B.. Forn = 1,
the unstable transverse modes m = ) ané m = | are separated
by a stable region in B., but for n =3 the transverse mode
structure changes continuously from the m =0 to the m = 4
mode as B. increases from zeco to 1.5, without being separated
by stable regions ir. B..

Ligget and Zirin (1984) ubserved rotativnal moitons in
several prominences and found that the motion conunues
through several turns while the eddy size remains constant.
They found that the rotational motion is an actual motion of
prominence material that dmes not destroy the prominences
and pointed out the difficulty 1n understanding the motion in
view of the conceptual model that prominences are being sus-
pended 1n magnetic fields: the rotation must wind up the mag-
netic field. transfering energy to the field and slowing down or
stopping the rotation. We notice that the rotational motion




AN, SUESS, AND WU

| | 1
\ ———n3
\
\\
\ B z = 0.2 -
15+ \
\
\
\
\
\
\
\
\
\
\
\
\
10 A\ -
\
\
\
\
\
\
\
\
s\ \
\
\ \
\ —
\
\
\
\
\
\
\
\
\
\
! [\
0.2 0.3 0.4
A

F1G. 10 —Growth rate. . versus £ for B, = 0. 2 and 10. The solid line 1s for
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has a simiar pattern to the m = 0 unstable velocity pattern
shown in Figure 5a. In addition to this similanity, the m =0
mode has the highest growth rate among various m modes
even under gravity, and the mode does not cause prominence
eruption Therefore. we suggest that the rotational motion 1s
due to the m = 0 unstable mode in a detached flux tube. The
closed field lines in a detached tlux tube may allow the rota-
tional motion to exist through several turns without winding
up the field lines. In order to confirm our suggestion, the tield
lines in the rotational region must be closed and highly twisted
for the m = 0 mode.

The effect of gravity 1s measured with the parameter 4. which
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1s the ratio of the width of the coronal arcade to the gravita-
tional scale height. The higher 4 is, the stronger the effect of
gravity. Gravity is shown to play a stabilizing role for all the
equilibria we have studied in this paper. It is found that higher
m modes are more strongly stabilized by gravity than lower m
modes. For example, the n = 3/m = 0 mode is unstable for
A < 0.33 but r = 3/m = 3 modes are completely stabilized for
4> 0.09. Our equilibria are all stable for i > 0.35. which is
much lower than a realistic value for 4 1n coronal arcades (> 1)
and quiescent prominences (~ 100). This result implies that
quescent prominences may not erupt due to MHD insta-
bilities because of the strong stabilizing effect of gravity. In
order for a prominence to erupt, the gravitational effect should
be low (4 < 1). A low value of 4 can be achieved by increasing
the prominence temperature by two orders of magnitude. But,
even though some observations show a heating prior to an
eruption. no such temperature enhancement has been
observed. The gravitational effect can also be reduced if plasma
condenses to form a prominence and the mass is supported by
the magnetic field. Due to magnetic support, the plasma
density would change slowly in the vertical direction, causing a
higher effective gravitational scale height than without mag-
netic support. If gravity stabilizes MHD instabilities in more
realistic prominence magnetic fields in this manner, then the
critical shear phenomenon is a good candidate for an eruptive
mechanism.

Zwingman (1987) studied a critical shear mechanism for
solar ~ruptive phencmena by solving the magnetohydrostatic
equation. As he increased a pressure parameter, 4, suc-
cessively to a critical value for a given magnetic shear, he even-
tually found no neighboring solution. He checked the MHD
stability of the solutions against the n =0 mode and founa
that the solutions are stable for /, less than a critical value.
This stability study looks like a promising way to ensure that
the critical phenomenon is an eruptive mechanism. However,
our result indicates that the stability against n = 0 mode does
not necessarily mean stability against n = 0 modes. The stabil-
ity for n = 0 modes must also be considered to make sure that
the sequence of the equilibrium solutions with 4, less than
critical value are stable.

Our numerical model for linear MHD stabihty differs from
most previous studies in that we solve time-dependent linear
MHD equations as an initial and boundary value problem
while previous studies used the energy principle. One advan-
tage of our method over the energy principle 1s that we can
easily extend it to a nonlinear MHD problem and add non-
ideal effects. By transforming the coordinates as shown in
equation (18) we can also study the stability of coronal mag-
netic structures which have open field lines. But we note that
the method s restricted to the study of the most unstable
mode.

We thank Dr D. H. Hathaway for giving extensive advice on
developing the numerical model and for reading and com-
menting on the manuscript. We also thank Dr. R. L. Moore for
his valuable comments during the course of this research. This
work 1s supported by NASA HQ Grant (NAGW-9) and Air
Force Grant (AFOSR-88-0013) (CHA and STW) and also by
NASA Solar and Heliospberic Physics Branch and Space
Plasma Physics Branch (STS and CHA).




No. 2, 1989 MHD INSTABILITIES IN CORONAL ARCADES
APPENDIX
NUMERICAL METHOD

To solve equations 1)+5) numerically, we specify velocity and all equilibrium quantities at the center of each grid cell and the
perturbed pressure, magnetic field, and density at the corner of each gnd cell. The finite difference schemes are as follows:

At

Vi erz = Vevzg ez = [~BVp, + (I x B)y + p 1512 evs2 (A1)
Podi+12.,4112
(Ax)?:i‘/zzjﬂzz - (Ax)":ll/’zznuz = Atfo x Bo]:":bz.nuz > (A2)
(Bl)n+3/1 (v x A n*JIZ : (A3)
312 a2 €po 6 !
P = (piy Ve = =il v, re + o, "y =4 ikv,po + [PV * v ; (Ad)
.4
n+ 372 n+1/2 5po "
(pl) —(p2)] = —At| v, a—+v,-—y'+lkv Po+ DoV . {AS)
x [}

We use the perturbed vector potential A, to ensure V- B =0 in our numerical calculation. The explicit expressions of the
x-component of momentum and induction equations are as follows.
The x-component of equation (A1) is

At

1
R+ 12 = Wl vzjerz = __—(p ]
oJi+ 12,5+ 172

= BlP)is1 1 +Pisr, — Py e — (P)i)]

x 0.5/Ax + Joh+12.5+1/2 X (Exz)fu/z.huz —(Johir1i2.,+102 X (B_Iy)|+l/2.;+l)2 + (le).n,z.jﬂfz

X Bogiv /25412 = Uiaie vz + 12 X Boherzgerial s (A6)
where
Uiphe sz = kByierzye1z = (Bidieryer + (Biodivr, = (Bioiyer — (B12),,1(24%) (A7)
(Jihirvager2 = UByis 1 e + (Byyiwr, — By, vy — (B J/(2AX)
~Bidisryer F (Byd,er — (Byohsr, =~ (By),,1/(24) . (A8)
The x-component of the induction equations (A2) and (A3) are
(A :’:13‘22.[‘ vz — (A, ?:ll/lzz.lurz = Atl(v) v 1,205 12Bohr 2.y~ 12 = Wdia iz 12 Boyhie 12,5+ Y (A9)
Byahy = UAdin vz ez F(ADimuzyerz = (Adiv iz, -1z = (Adic 2, - 1,2J28Y) = ik(A)), , . (A10}

The averaged values (8, By, B\.)i+ /2., +1,; are defined as

(le)n-l'z.ﬁfllz = [(le)n-l. )+t + (le)l+l.; + (le)n.;v-l + (le)l.]]/,4
and the averaged values(d,. ¢,, £,, T2y Po» Dok, are defined as

(6;')1.; = [(vx)n- 1:2.5+ 172 + (vx)i# 1/2.p-1:2 + ‘UX)I— 1,25+ 1:2 + (vr)i- 1123~ l!2]/4'
The parual denvative of p. py, v with respect to x and y are as follows.

‘ ,
(‘Tg> =[Podi+1 2. 5-12 FPoder.2 -1 2 — (Podi=1 2.5+ 1.2 = (Pode=1 2.,-1,2)/(24%) ,
1)

(¢p :
(‘8_}0') = [po)iet 25«12 FPod=t 2501 2 = (Podwy 25-1 2 = (Podi=1 2.,-1 21/(28Y).
“y

Since the perturbed quantities have the following form.
Sl 0 = £4ix, v, e
ana

o

£

= kfl(r .

s

the two-dimensional perturbation quantities /,(x, 3, 1) are complex. In order to soive the equations numerically, we have to divide
¢ach equation into real and imaginary parts which are coupled to each other for k = 0.
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For specifying boundary condittons. we assumed that field lines are tied to the lower boundary. and that there 1s no charge
accumujation on and no energy and mass flow across the side boundary (Bateman et al. 1974),

Side boundary: E =0, V-E; =0. pi=p=0:
Lower boundary. v=0

For a lower boundary condition. v = 01s sufficient to solve the equations when v 1s defined at the corner of each gnd cell. When v
is defined at the center of each grid cell. we need to assume that equilibrium quantities are the same at the upper and lower cells of
the lower boundary.

We use two different upper boundary conditions depending on what coordinate system we use. If we assume that the upper
boundary is at a finite height in the y-coordinate the upper boundary condition is the same as the side bundary condition. but the
boundary condition 1s not realistic for solar magnetic fields which have an open boundary. In order to take into account the open
boundary we use an exponential coordinate which is transformed by

W= e-(uz))

in which the computing domain 0 < w < 11sequivalent to the physical domain 0 < ) < . In (s w-coordinate w = | (1.e..y = 0)1s
the lower boundary and w = 0 (ie.. y = x)1s the upper boundary. At w = 1, the boundary condition 1s » = 0 but at w = 0 we
specify B, = 0,p, = p, = 0. To transform the coordinate from y to w all the y derivatives are changed as

o 1 i )

cr w \ 2"
In this paper we assume that corounal arcades have a finite upper boundary. The stability of a coronal arcade with open boundary
wiil be studied later.
The time-dependent computation is initiated by a random velocity perturbation to an imtial steady equilibrium state. After the
perturbation. we calculate B,. p,. and p, at 1 = A1,2 and then calculate v at t = Ar. After the imual step, B,, p,. and p,, are
advanced 1n time with the time step At alternately with v until we reach the linear growth rate.

’J.) ) T T T T T

i L I 1 1 1
4 8 12 16 20 24
t
Fi; 11 —Growth rate of a stable equiibnium. 5 vs time tor ditferent values of the artificial viscosits coefficient The hight solid ing 15 tor v = VOO0L, the dotted

itne1sfor v = 00003, and the heavv solid nne s 1or v = O (08
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Fi1G 12.—Growth rate of an unstable equilibnum, w, vs ume for different values of the artificial viscosity coefficient. The solid line is for v = 0.0001, and the dotted
lineis for v = 00003.

We add an artificial viscosity term, p, vV?v, to the momentum equation (1) to stabilize a numerical instabilsty which develops in a
gravitationally stratified atmosphere. When numerical instability develops, the velocity 1s distributed randomly and oscillates 1n
time with very short periods. We find that the artificial viscosity term 1s not needed 1n the absence of gravity. Figure 11 shows how
the growth rate of a stable equilibrium changes with time for different v values. The figure shows that the growth rate keeps
oscitlating around zero as time progresses, which 1s a typical phenomenon for a stable emlibrium. For v = | x 10~* the growth rate
oscillates randomly with short periods but for v =3 x 107 and 5 x 10™* the oscillations are more orderly and have longer
periods. Figure 12 shows how the growth rate of an unstable equilibrium saturates to a linear growth rate and how the linear
growth rate depends on the magmtude of v. For v = 1 x 10™*, the growth rate osciilates randomly with high amplitudes before 1t
saturates to a linear growth rate while for v = 3 x 107 * the oscitlation 1s less random and the saturation occurs earher. We find that
the linear growth rate decreases as we increase the magnitude of v, for v =1 x 107* 3 x 107%, and 5 x 10~*, the linear growth
rates are o = 1.07, 1.01. and 0.97, respectively The resuit indicates that we should usc as small value of v as possible in order to not
alter the stabulity result. Too small value causes not only numerical instability but also a longer saturatron time. It 1s found that
=3 x 10™* 15 the opumum value for an equilibrium witn open boundary, but we can reduce the value downtov =1 x 107* for
an equilibrium with a finite upper boundary. In this study, we choose v = 3 x 107*.

With a finite upper boundary, a low (ot zero) value of v does not cause severe numerical instability. A severe numerical instabihity
occurs oniy when the ume step At vioiates the Courant-F niedrichs-Lewy (CI'L, condition We have to cacck the CFL condition
when we increase magnetic shear because higher magnetic shear causes a lower transit time of an Alfvén wave across each grid cell.
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ABSTRACT

We present. for the first time, full analytical solutions to the wave equations for steady vertical compression
waves in an sothermal hydrostatic atmosphere with umform horizontal magnetic field. There are two classes
of waves: {1) upward waves. those which are excited from below by a horizontal perturbing surface: and (2)
downward waves. those which are excited from above by a horizontal perturbing surface. We show that in the
steady state approach the behavior of these two classes of waves 1s different. The upward waves are non-
propagating (standing) waves for any wave frequency. For each frequency. there 1s a critical height n the
atmosphere below which the upward wave is a regular standing wave and above which the wave 1s an evanes-
cent standing wave. The cntical height is the height at which a local characteristic frequency. defined by the
local fast mode speed divided by twice the scale height of the isothermal atmosphere, equals the wave fre-
quency. This characteristic frequency, which we call the local critical frequency. increases with height because
the Alfvén velocity increases with height. Above the critical height reflectior on the density gradient dominates
the behavior of the upward waves. The downward waves are propagating waves for all frequencies that are
higher than the acoustic cutoff frequency obtained for the same isothermal atmosphere without magneuc field.
If the frequency of the downward wave is at or below this cutoff, the wave is an evanescent wave. These
results show that the finding by Thomas. that the cutoft frequency for vertically propagating magnetoacoustic
waves 1n an isothermal atmosphere with horizontal magnetic field is the same as for isothermal atmosphere
with no magnetic field. is true only for the downward waves.

Subject headings' hydromagnetics -— Sun: osciliations — Sun: atmosphere — wave motions

L INTRODUCTION

\ number of authors have considered propagation of magnetohydrodynamic (MHD) waves in an 1sothermal hydrostatic
atmosphere sutfused by a umform. oblique (or. 1n a4 special case. horizontal) magnetic field. Many have used a local dispersion
relation 1n which the stratification of the atmosphere gives rise to cutotf frequencies (McLcllan and Winterberg 1968: Stein and
Letbacher 1974, Thomas 1982, Musieiak and Rosner 1987, sce also reviews by Priest 1982, Thomas 1983; Campos 1987 and
references theretn) This approach is justified only when the vertical wavelength 1s much smaller than the atmospheric characteristic
scale height (the WKB approximation). It has been shown recently (Thomas 1982. 1983, Campos 1987, Musieiak 1988) that many
resuits previousiy obtamned were outstde the range of validity of the local dispersion relation approach and that the cutoff
frequencies were incorrectly calculated.

In order to obtan the correct cut>ff frequencies. either a global dispersion relation for MHD waves 1s needed or exact analytical
solutions of the wave equations derived for strautied atmospheres are required. The first case was considered by Yu (1965), Deutsch
11967 and Nye and Thomas (1974). who calculated a special case when the background atmosphere 1s 1sothermal with a horizontal
magnetic fieid that decreases exponentially with height In this approach. the wave equation leads to a global dispersion relation
which 1 the same n the whole atmosphere and 1s not restricted to short vertical wavelengths, thus allows properly defining the true
cutoft frequencies However, this approach is very limited and cannot be appiied to more reahistic situations. Similarly. 1n the second
case the exact ananticat solutions of the MHD wave equauons have been found only in the himited situation of an 1sotherma.
atmosphere with 4 umform magneuc field

A\ spectal case of unitorm and purely honzontal magnetic tield was considered Summers (1976) who obtained approximate
solutions in the imit of low- and high-f§ plasma case twhere i 1s ratio of sound speed to the Alfven velocity) and showed that in the
lunit of low-n plasma the resuling solution represents a standmg wave. He also found the formal solutions given in terms of
hs pergeometriy tunctions More recently. Thomas 119821 and Campos 11985) caleulated the cutott frequency by solving the wave
cquation tor veloarty perturbations and found exact andivucal soiutions which. they thought, were vahd for Gie whole physical
space of the considered model and for any direction of wave propagation Also. they concluded that the cutott frequency s nor
utecteu Py the strength of the untorm horizontal magactie tickd and theretore does not de,  1d on the Alfven selodity . instead thes
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suggested that the filtering of magnetoacoustic waves through the atmosphere 1s a pure compressive phenomenon. being thereby
identical to the filtering of acousto-gravity waves. There are, however, two important problems with their approach as well as with
Summers approach—namely, they did not obtain full solutions to the wave equation (see § III and Appendix A for physical and
mathematical arguments. respectively) and did nor specify the direction 1n the atmosphere from which the waves are excited. It must
be emphasized that the latter point 1s essential for any inhomogeneous media as the physical conditions and their vaniation with
distance from the wave source are different in different directions. therefore waves excited upward (again-t gravity) and downward
{in the direction of gravity) with respect to the wave source behave differently.

It 1s our main goal to obtain first full analytical steady solutions to the wave equation denived for compression vertical waves in
an 1sothermal atmosphere with umiform honizontal magnetic field, and to show that the solution for the waves excited from below 1s
different from that for the waves excited from above. We shall derive and solve the wave equations for the veloaity perturbations and
for the magnetic field perturbations, finding that the latter show different spatial variations than the velocity perturbations.

We begin our presentation with some physical considerations concerning two simple cases: the “cold ” plasma case and high-f
plasma case. It 1s shown that in the case of cold plasma, compression waves behave similarly to purely transverse Alfvén waves and
that there are two distinct solutions to the wave equations: standing and propagating waves for the upward and downward
directions. sespectively. We also introduce a charactenstic frequency (called here a local critical frequency) that determines, for a
given wave frequency, the height in the atmosphere at which wave reflection becomes important. By comparing these results to
those given by Thomas (1982), we find that no standing wave solutions and no local critical frequencies are obtained in his
approach. Therefore, his solutions cannot describe the behavior of the upward waves in the limit of cold plasma. However., when the
it of high-# plasma 1s considered, Thomas's solutions with the acoustic cutoff frequency determimng the type of solutions are
recovered. This implies that Thomas’s results describe only the behavior of the downward waves.

After considering these two simple cases, we present the full solutions to the general wave equations describing the behavior of
vetical compression waves in our model (§ IV) and then show how to select physical solutions (§ V). We find that the upward waves
correspond to the upward waves n the cold plasma case: the local critical frequency has the same role and the same physical
meaning 1n both cases. The downward waves correspond to the downward waves in the high-f§ plasma case. the acoustic cutoff
frequency determines whether the waves can or cannot propagate. This 1s the same result as that found by Thomas (1982), although
he apparently did not reahze that the result does not apply to the upward waves but only to the downward waves. In § VI, we
discuss possible applications of the obtained results to solar and stellar physics.

{I. BASIC FORMULATION AND WAVE EQUATIONS

Throughout ihis pape:, we assumc that the background atmosphere 1s 1n hydrostatic equilibrium with uniform acceleradon of
gravity (g = —g3), and that the atmosphere is a perfect gas with umform temperature T;,. Hence, the density vanation 1s given by
Polz) = poo exp (—z/H), where H is the density (and pressure) scale height and p, is the gas density at = = 0. We also take the
atmosphere to be permeated by a honizontal uniform magnetic field given by B, = B, %; 1n this case the magnetic field has no effect
on the equilibrium of the atmosphere. The density scale height is determined by H = V2/yg, where V,[ =(yR T, u)! *] is the adiabatic
sound speed. Hence, the model atmosphere 1s specified by the free sarameters: By, Ty, poo» 9- 7 and u, which are constant in the
whole atmosphere.

We assume that both velocity and magnetic field perturbations depend solely on height. =, and time, t, and given by Uz, 1) =
uiz. 1)z and B(z, t) = By + b(z, £)x (see Fig. 1). As shown 1n this figure, we introduce the coordinate system with the plane z =0
dividing the atmosphere into two half-spaces characterized by decreasing (positive =) or increasing (negative =} density with distance
from z = 0. This leads to plasma f§ [denned here as ¥, V,,, where V, = B, (4np,)' * 1s the Alfvén velocity] being arbitrary at the plane
- = () and only 1n a special case does fi(z = () = 1. Because py, 1s an arbitrary parameter. the plane - = 0 can be placed anywhere in
the atmosphere. We also find 1t useful to assume that the wave source 1s located on this plane. 1€, that the plane itself generates the
waves (see Fig. 2). We assume that the plane {to be called the forcing plane or honizontal perturbing surface) produces upward and
downward propagating magnetoacoustic waves, and we study the steady state wave behavior. It 1s obvous from a physical point of
view that the conditions for waves 1n the upward and downward directions are significantly different because. far from the forcing
plane, upward and downward waves are 1n a medium with very low and very high-f§ plasma. respectively. We discuss this in detail in
the following sections

The MHD equations are considered in the approximation that the gas pressure 1s a scalar and that displacement currents and
clectrostatic forces are neglected. We apply the MHD equations to our model of the atmosphere and then lineanize them by
assurming that the perturbations about the basic state are small and adiabatic. This leads to the following equations for conservation
of mass. energy, momentum and magneti- flux:

cp ¢ 1
— = I’o(\(.,: ”>1. 0. (1)

"t

‘p L, Cu
T = PoguEpo V=0, 2)
Ci (:z
‘w o (p B, ¢h
Yo — = — =~ Py + — — =1{}, i3
Po etz n dn oz )
and
‘h cu
— =By —=0. {4)
! z
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FiG. 1.—Definition of the pertinent symbols refating the directions between the gravity, g, the uniform background magnetic field. 8,, the perturbed velocity, U,
and the perturbed magnetic field, B. Note also that the density p(z) decreases with height according to hydrostatic equilibrium 1n an 1sothermal atmosphere; hence,
both 8 and ¥, decrease exponentially with height.

In equations (1)H4), the perturbations of density, p:essure, velocity and magnetic field are represented by p. p, u, and b, respectively.
Equations (1}-(4) show that we are considering only MHD waves with an x-compoaent of the perturbed magnetic field; these are
purety compressional (magnetoacoustic) waves that oscillate vertically, perpendicular o ilie magnetic field lines.
The wave equation for the velocity perturbation u may be obtained by eliminating p, p, and b from equations (1)4). This gives
(see also Nye and Thomas 1974)
u 2 o Ou VZou
atl (Vs + Va) azz + H 3z =0. (5)

In the previous studies of this problem, only the wave equation for the velocity perturbation has been considered. However, as
known from studies of Alfvén waves (see Ferraro and Plumpton 1958) the velocity and magnetic field perturbations behave

4+ 00

Az

Standing Wave
Upward Solutions
Direction
-
/] X
Downward 77 777/
Cireciion Forcing Plan
'
[/ NS
ays /7777
Propagating or Evanescent
v o Wave Solutions

Fio. 2 —Sketch of the forcing plane imagined in the physical considerations by which we select the wave solutions for upward and downward waves These steady
state solutions show (1) that al upward waves are standing waves for any frequency and any values of the parameters of the model atmosphere (for 8, > 0 and H
fimte). and {2) that the downward waves are either propagaung or cvanescent waves depending only on whether the frequency 1s higher or lower than the cutoff
frequency w, = V,/2H set by the temperature of the atmosphere (and by g, 7, and )
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differently in a stratified medium. Therefore, we also derive the wave equation for the magnetic field perturbation b and for the
perturbations in density and pressure. We begin with the magnetic field perturbation and eliminate all the varables from equations
(1)H4) in terms of b. This gives the wave equation in the form:

P ., 0% Vi-Viob
e~ Vet Vaga+ =g 5,=0. ©

By comparing this equation to equation (5), one sees that the wave equations are different, which means that the MHD variables u
and b show different spatial dependence in an isothermal atmosphere. We find that the wave equations for redefined variables p/p,
and p/p, satisfy the same wave equation as for the magnetic field b; this formaily allows us to deal with only two wave equations of
different forms (for u and b) and when the latter is solved the solutions for both p and p are immediately known. The wave equations
(5) and (6) fully describe the downward and upward waves below and above our wave source. If there are no gradients (H — o) the
solutions to the wave equation represent magnetoacoustic waves propagating with the phase velocity V7 = V2 + V2 resulting from
compressional stresses in both the gas pressure and the magnetic field pressure.

III. PHYSICAL CONSIDERATIONS

Before the full solutions to the wave equations (5) and (6) are obtained for the model described in the previous section, we begin
with two simple cases, the limits of cold plasma (# = 0) and high-g plasma (f > 1). We discuss physical implications for the wave
behavior that result from considering these simplifications and find that upward and downward waves behave differently. By
comparing our results with those obtained by Thomas (1982), we conclude, on the basis of physical arguments, that the behavior of
the upward waves in the case of cold plasma cannot be described by Thomas’s approach (see also Appendix A for mathematical
arguments) and therefore his approach is of limited applicability. Thus, we conclude that a new treatment of this problem (in the
case of finite temperature) is necessary. Qur interpretation of the full solutions, presented in § V, is guided by our understanding of
the simple limiting cases considered here.

a) Limit of Cold Plasma

To consider the compression waves in the limit of cold plasma, we assume that ¥, — 0 and g — 0 to give the density scale height
H = const. Then, equations (5) and (6) are reduced to the form which is identical to that describing purely transverse Alfvén waves;
this means that the fast mode waves propagating across the field rines behave simiiarly to Alfvén waves propagating aiouy tic
magnetic field lines. Note that this similarity is only mathematical as the main physical differences between the two types of waves
still remain. In the case considered here, the fast waves are purely compressional waves and exist because of the field compression,
while Alfvén waves are purely transverse and tension stress of the magnetic field is responsible for their existence. Despite this
physical difference, the basic propagation equations are the same and therefore insight into the wave propagation properties may be
gained by using the results previously obtained for Alfvén waves propagating in a stratified medium with a vertical and uniform
magnetic field (Ferraro and Plumpton 1958; Hollweg 1978; Leroy 1980; Rosner, Low, and Holzer 1986, and references therein; see
also An et al. 1989, for a numerical time-dependent approach).

To describe the behavior of compression waves propagating across the field lines in the cold plasma, we begin with transform-
ation of equations (5) and (6) using a new variable n = w/w,(z), where w,(z) = V,(2)/2H, and change wave vanables as follows:
u(z, t) = u,(n, t) = us(ne "' and bz, t)/(pg)'* = b,(z,t) = by(n, t) = by(n)e"**. This gives

d*u du
222 24y, = 7
n d”z+nd”+"“2 0, (M
and
d*b db
R e BT =0 8

which are the Bessel type of equations with the solutions given by u, = C, Jo(n) + C, Yo(n) and by = C3J4(m) + C, Yi(n); Jand ¥
are Bessel and Weber functions, respectively, and subscripts 0 and | determine the order of the functions.

Now, we must introduce the forcing plane and obtain solutions in the upward and downward directions. It can be easily shown
that in the mode! considered here, by analogy with Alfvén waves 1n an isothermal atmosphere (An et al. 1989), the upward waves
have finite transit time (exponential increase of the phase velocity) to reach infinity and therefore they are always standing waves;
this means that the standing wave solutions are unavoidable for the upward direction. However, for downward waves the transit
time to reach infinity is infinite (exponential decrease of the phase velocity) which means that these waves are propagating waves.

The obtained soluticns to equations (7) and (8) describe standing waves if the constants of integration C, , , , are real numbers
For the upward waves, then, we can apply the boundary condition of finite amplitude at z = + oo (see Fig. 2) to determine two of
these constants. We find that both Weber functions (Y, and Y,) are infinite at n = 0 and by physical reasoning (finite wave energy
density) these solutions have to be excluded by assuming C, = C, = 0. Hence. the solutions for the upward waves are given 1n the
form: u, = C, Jo{n)e ™" and b, = CyJ(n)e " The functions J, and J, are plotted in Figures 3a and 3¢ which show that both
functions can be divided into two « *parate parts, namely, the part ‘with and the part without nodes. The latter part 1s the wave in the
region of atmosphere where reflection dominates (see An et al. 1989) as the wavelength becomes longer than the local aznsity scaie
height: in this region the wave is called here evanescent standing wave. The other part with nodes 1s 1n the region of the amosphere
where the wavelength 1s shorter than the local density scale height and therefore there 1s little reflection,, in this region, the standing
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FiG. 3.—Upward and downward waves in the cold plasma case. The upward standing wave solutions, given by the zeroth and first-order Bessel function, are

plotted for the velocity and magnetc field perturbations in Figs. 3a and 3c. respectively. The downward propagating wave solutions are presented 1n Figs. 3b and 3¢
for the veloaity and magnetic field perturbations, respectively. The forcing plane 1s located at n = 13.4.

wave 1s formed trom two opposite propagating waves and is called here regular standing wave. The fact that the steady state
solutions describing behavior of compression waves 1n low-f plasma represent standing waves was first shown by Summers (1976).
However, he did not discuss this problem 1n terms of the upward and downward waves and did not pay attention to wave reflection.
Our paper deals with both these problems in detail.

The transition between the region of evanescent and regular standing waves does not take place at one particular point but
gradually through the vicimty of the height at which the condition w = w, 1s satisfied. It was recently shown by An et al. (1989) that
at this height wave reflection dorunates in the wave behavior. Hence, it is arbitrary but reasonabie to adopt the point where w = w,
{or 4 = 4rH) to the boundary between the two regions. That 1s, for w > w, the upward wave solutions are reasonably called regular
standing waves. Above this height, w < w, and the the upward waves reasonably called evanescent standing waves. Note that for
finite . the condition w < w, 1s satisfied above some height for any wave frequency, which means that the evanescent standing
waves are unavoidable steady state solutions for the upward waves. Hence, at any given height, as the wave frequency w is
decreased. reflection becomes dominant and propagation becomes suppressed as w drops below w,. We therfore call w, the local
critical frequency. Sometimes. this frequency 1s also called the cutoff frequency (e.g., Campos 1987) by analogy to the acoustic cutoff
frequency. the latter, however, 1s the same (global) frequency for the whole atmosphere (see the next subsection) which makes it
different from the local critical frequency.

Now, we consider the waves that propagate downward from the forang plane. Because the propagation tme lv < = — © is
infinite for any wave frequency, the downward waves arc propagating waves for all wave frequencies, there ts no cutoff frequency for
downward propagation in the cold plasma imit. For propagating waves, both constants C, and C, must be purely imaginary and
equal to C, and C, in magntude. Hence, the solutions can be wntten in the form: u, = C,[Jo{n) — iYy(m)] and by = C;[J,(n)
— 1Y;(n)]. These solutions represent downward propagating waves for 2ny real constants C, and C;. We plot the real part of these
solutions in Figures 3b and 3d.

To summanze. the results presented 1n this subsection demonstrate similarities in the behavior between compressional and
transverse (Alfven) waves considered 1n a cold plasma medium. We see that there are two distinct classes of steady state solutions.
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standing and propagating waves existing for the upward and downward directions with respect to the wave source, respectively (see
Fig. 2). We find that the upward waves become evanescent standing waves above some height for any wave frequency, and below
that height the upward wave 1s a regular standing wave composed of two oppostitely directed propagating waves. The height in the
atmosphere at which the upward waves become the evanescent standing waves is roughly the height at which the conditionw = w,
1s satisfied ., this means that w, 1s the local cnitical frequency. The downward waves are propagating waves for any wave frequency.

Finally, we need to compare the results obtained here to those given by Thomas (1982) and find out whether the same
conclusions, concerning the wave behavior, can be drawn from his results. As shown in Appendix A, Thomas's solutions are
represented by descending power solutions, which means that they apply to the singular point at z = — x (large §) and cannot be
valid in the vicinity of the singular point z = oo (§ = 0) for any real wave frequency. However, as demonstrated by the solution to the
cold plasma case, the steady state solution for the upward waves must include the point z = o0. Therefore, Thomas's results are
mathematically flawed for the upward waves. The full solutions to the problem of the wave behavior 1n an 1sothermal and stratified
atmosphere with uniform horizontal magnetic field are presented in section 4.

b) Limit of High-B Plasma

In the model considered here (see § II), the limit of high-g, (V,/V, > 1) plasma 1s naturally expected for the downward waves
because V, decreases with depth (see Fig. 1). Thus, we assume that the wave source (or the plane z = 0) is located 1n the region of
sufficiently high density to have the condition £ > 1 fulfilled everywhere below the plane. This means that the whole medium for
downward propagating waves is a high-f plasma and that in this limit the wave equations (5) and (6) are reduced to the well-known
wave equation for acoustic waves propagating vertically in an 1sothermal atmosphere (Lamb 1945; Moore and Spiegel 1964). In this
case, the phase velocity approaches ¥, and the waves mimic the behavior of acoustic waves. Hence, they are either propagating waves
for w > w, or evanescent waves for w < w,, with w( = V,/2H) being constant in the whole atmosphere and calied the acoustic cutoff
frequency. This shows that the acoustic cutoff frequency has a distinctly different role than the local critical frequency w,, the cutoff
w, determines the behavior of the downward wave solutions and w, determines the height at which the upward waves transition
from regular standing waves to evanescent waves.

The conclusion that the condition w > w, is necessary to have propagating wave solutions was obtained by Summers (1976) from
his approximate solutions and also by Thomas (1982) and Campos (1985) who solved the wave equation (5) without any approx-
imation by reducing 1t to the hypergeometric form (see Appendix A). In this paper, we confirm their results but would like to
emphasize that those results concern onily downward propagating waves because, in the steady siate approach. there are no
propagating wave solutions for the upward direction. The latter was demonstrated 1n the previous subsection for the cold nlasma case
and will also be extended on the general case ot hnite temperature (see §§ IV and V). Each upward steady solutton 1s a standing wave,
even though below a critical height this standing wave 1s composed of upward and downward propagating waves. Summers (1976),
Thomas (1982), and Campos (1985) missed the point that the propagation cutoff at w, 1s only a property of the downward waves.

IV. FULL ANALYTICAL SOLUTIONS TO THE WAVE EQUATIONS
In this section, we present the transformed form of the wave equations (5) and (6), discuss their mathematical properties, and give
full solutions to these equations. The physical interpretation of the obtained solutions can be found 1n the next section.
a) Transformed Wave Equations and Their Properties

After having presented the wave equations and discussed the wave behavior in the limits of cold and high-8 plasma. we now
proceed to obtatn full solutions to equations (5) and (6). To do this, we transform these equations using the plasma § and change
variables as follows" u(z, 1} = u (B, t) = u,(fle "' and b(z, 1) = b,(z, tNpo)"'? = b4(B, 1) = h;(fle ™" This gives

&N, PPN QB =)

P T A T ®
where
_L+ap
PI(B) - l + /}z ’ (10)
_af -4
Qn(/jv 11) - 1 + /}z ’ (ll)

witht1 = 12N, = (43, b,].0, = (3.5 ¢, = (2,753 + 23)],d, = [0, 1] and

,

%, ==
“
being an arbitrary constant parameter.

From a mathematical point of view equat.on (9) shows one singular point on the real finite axis (ff = 0) and. according to the
results of § V¢, one singular point at § = =, both these points are reqular singular pownts, To find the full solutions to equation (9),
we begin by obtaining the solutions in the vicimity of the regular singular point at ff = 0 and then discuss the range of vahidity of
these solutions As shown in the next subsection, the solutions obtained at § = 0 do not cover the whole space and therefore we must
also explore solutions at the singular point f = =« and at the ordinary point § = 1 After obtaining full solutions to equation (9), we
shall select the physical solutions for the upward waves and for the downward waves (see § V).
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b) Singular Point Solutionsat f = 0

The solutions in the vicinity of the real singular point can be obtained by assuming that all the functions in equation (9) are
analytical and by making the series expansion of P,, @,,and N;about § = 0. For P,and Q,, this gives

P = 3B =1~ (@ — ) T (- 1p>, (12
and
0f,0) = 3 0u" = ~di— @+ d) 5 (— 178, 13

with all odd coefficients being zero. It is easily seen that these series expansions converge only for # < 1, which restricts the solutions
to where V¥, > V.. In addition, the series expansions (12) and (13) show a discouraging slowness in converging when § — 1. Thus, to
present the full solutions to equation (9), we must also obtain the solutions in the vicinity of the point § = 1 as well as the solutions
for B > 1. We deal with these problems separately in the next two subsections.

Now, we are looking for the solutions given by the series expansion following the standard procedure in solving differential
equations in the vicinity of singular points (e.g., Murphy 1960), and obtain

@
N{B) = zow,,, g, (14)

n=
where 4 is a free parameter to be determined from the indicial equation and ®,, = [¢,, ¥,] are the expansion coefficients for the
velocity and magnetic perturbations, respectively; ¢ and , are arbitrary constants. Note also that the coefficients ¢, and y,
depend on the constant paramerer «, but to present the results in 2 more compact form this is not explicitly shown 1n the above
equation. The same convention is to be assumed in later parts of this paper where only dependence on # and ¢t is emphasized. It is
easy to demonstrate that the indicial equation shows two solutions: 1; = 4, = 0 for the velocity perturbations, and 4, , = +1, for
the magnetic field perturbations. Because in the first case both roots are zero, the solutions aiways contain a logarithmic term. In the
latter case, the roots are nonzero integers and therefore we need to test whether the logarithmic term occurs in the solution,
Following Mxurphy (1960), we calculate § = 4, — 4, = 2 and look for the constant /4 ,,. It appears that , is not an arbitrary

constant, Thus che logarithmic erm will also exist in the solution for the magnetic field.
Solutions fcr the velocity perturbations are given in the following form:

uy(B, 1) = [C, Fo(B) + C:Fo(B)Ie™"" , (15)
where
2B = T 4. (16)
with ¢, = 1 and
¢2n (2")2 z (_ l)"—m(4m + a—2)¢2m s (17)

valid for all n > 1 C, and C, are arbitrary consta.its of integration to be determined from boundary conditions. In the following

_parts of this paper, the letter C will be always used to denote the constant of integration.

In addition, we have

D) = FdBING) + T a7 (18)
where ¢, = 0 and
| ’ 1
Bou = £ (10" M[(4m +o3m= 2a) + 4m¢>2,.] , (19)

validforaltn > 1.
The solutions for the perturbed magnetic fields are given by

by(B, 1) = [C3 F1(B) + Co &\(H)]e ", (20)
where
FB= Y v @1
n=90
withrg = 0., = =2, 2/2,and
n=1
'/’2"=4n(n-1) S (= 1T"8m 4 2 W (22)
m=0
valid foralln > 1.
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In addition, we have

9.0 = £(PE + Ty )
where Y/ = 1, = (2,2 — 8)/4,and
Vinm g (=17 ~{om + a")[w' g |+ ot 4
2n 4"(" . 1) = ] 2m 2n(n _ l) 2m ij ’

valid foralln > 1.

It is easily seen from the above equations that in the limit of § < 1, the functions #, and ¢, reduce to Bessel J, and J, functions
of the zeroth and first order, respectively. The same is true for the functions ¥, and %, which, in this limit, become Weber functions
of the zeroth and first order, respectively. Therefore, we may call the functions obtained here generalized Bessel and Weber
functions.

Note that regular Bessel and Weber functions which result from equations (7) and (8) depend on the argument  instead of f; both
arguments are, however, related by § = «, 7. To make the comparison between regular and generalized Bessel and Weber functions,
we transform #, ,(8) = #o.;(n) and ¥, ,(B) = ¥, (1) with n < a;"* resulting from the condition that § < 1. The results plotted in
Figure 4 present the zeroth order generalized Bessel and Weger functions obtained for two different values of «, (0.025, 0.075) and
compared to the regular Bessel and Weber functions. In addition, the figure shows that the region of validity of the results is very
sensitive to the parameter a, and that convergence of #(n) and %(n) does not occur for all n < o, 1, but instead only for
n < 0.5 a'; the latter is indicated in Figure 4 by the last zero of these functions before they diverge. It should be also mentioned
that for small n both genzralized functions become identical to their regular counterparts and that this does not depend on .

¢) Singular Point Solutionsat =

As shown in previous subsection, the solutions obtained at the point f = 0 are not valid for all B. Thus, as the next step, we find
the solutions for § > 1, which is equivalent to obtaining the solutions in the vicinity of # = . To do so, we define a new variable
% = 1/p which allows finding the solutions for large p. Using M(x) = N{f), we write the wave equation (9} in the form:

2
dM:_*_P.(?{)%_*_Q.(Z;%)M‘:O

e x dx X ' @)
where
P = ’iz - xe; : (26)
¢ — 12
0t 2) = 11’ 2n
ande, = [1,3].

Now, the wave equatton (25) shows only one regular singular point on the finite real axis (¢ = 0 or § = x), and we may again
write the series expansion of functions P; and ¢, in the following form:

P@= T pat = —ei= (1 +e) T (=02, 28)
Qe = Lan'=ct(1+c) % (= e 29

These series are convergent when the condition y < 1(f > 1) is satisfied , which restricts the solutions to where ¥, < V..
Again, we are looking for the solutions given by a series expansion and obtain

M{y) = ‘Zo%nx"**, (30)

where 4 is a free parameter to be determined from the indicial equation, and ¥,, = [¢,, ¥,] are the expansion coefficients with ¢,
and i, being arbitrary but nonzero constants for the velocity and magnetic field perturbations, respectively. Note also that the
coefficients \¥,, depend on the parameter z,. In this case, the indicial equation shows, in the case considered here. two complex roots
defined by 4, , — | % i[{w? — w?)/w?]'’? for the veloaty perturbations, and by 4, ; = 2 + i[(w? — w])/w]]""? for the magnetic field
perturbations. Calculating 6 = 4, — 4,, we find that this quantity is not an integer; thus, the solutions do not contain the
logarithmic term. Because the root: are complex, the coefficients ,, are also comple. 1 the solutions (30) vcpresent etther

periodically oscillating functions when the condition w > w; 1s satisfied or nonoscillating winctions in the opposite hmut. Physical
consequences of this are discussed in the next section.

Solutions for the velocity perturbations are given in the form:

u(x, ) =[Cy Z5 (1) + C2 Zg(X)Je ™", (31)
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where
kel
Z§() = exp [£ile,? = )2 1ny] Zo¢z*,.x2"“, (32)
Pl
with ¢ = 1. The real and imaginary parts of ¢ 5, arc given by
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FiG. 4 —Uxample basis function: for the velocity solutinn in the 8 < | region of the model atmasphere vath arbitrary 3, and I The zerc th order generalized
Bessel. /,, and Weber, ¥, functions are plotted for dificrent &, = wyw .1 1a) and b), respectively The plots ars made for two different values of a, and compared
*0 regular Bessel and Weber functions obrained for the «, = 0 Lase Because the geueralized Hessel and Weber functions 4o not zonverge for all the arguments », the
calculauons are stopped at the last node before the functions diverge.

F16 5 Velocity solutions obtained in the vicinnty of the singulai point § = x for the case of aroitrary 8, and 7,,. The examples plotted are jor three different
parameiers x,in 1), (), and (o) respectively [t 1s <seen that the wave ampiitude decrea-cs in the dJownward tincicasing /1) direction
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and
-2 __ 1 1/2 n=1 1
Im(¢3) = 'Z'n((%ﬂ+‘ ZO( )"""(n —2m—1-zal 2) Im(¢3,), (34

valid foralin > 1.
For the magnetic field perturbations, we obtain

by(t, ) =[C3ZT () + Co Z7 ()]e™"" (35)
where
ZE) = exp [£ia7 = )2Ing] ¥ yd g™, (36)
n=0
with o = 1,and
o
Re(Wf) = T a l zo( l)"""[2n(m + 1)+ n(l + n ) S l] Re (%), 37
and
(a-z — 1)1/2 n=1 2
Im(y3)= m Zo( n- "'(n -2m-3- —) Im@yZ), (38)

valid foralln > 1.

As an example, we plot in Figure 5 the real part of the function Zg (eq. [31]) with real coefficients ¢,, (eq. [33]) for three different
parameters «,. The figure shows that the solutions are very sensitive to the parameter «, and they have an oscillatory shape with the
amplitude increasing for increasing argument .

d) Ordinary Point Solutionsat f = 1

The results presented 1n two previous subsections show that the solutions obtained at singular points = 0 and f = co cannor be
extendad to the vicinity of § = 1. Thus, we must find the solutions at ihis puint 2s weil.
We transform the wave equation (9) using the new variable é B — 1 and define L{&) = N{p). This gives

dzL,
B P 22 + Q& &)L, =0, (39)
where
 l+afl 48P
PO=nrizromco (40)
- z —-
04E, o) = — M+ 9 1)

[+ 4870+ &

Now, one sees that for both cases i = | and 2, & = 0 is the ordinary point and the method of finding the solutions (e.g., Murphy
1960) differs from that considered for the regular singular point. Note also that the solutions found in the vicinity of the ordinary
point cannot be extended to the vicinity of the singular points § = 0 and § = cc. The important result is, however, that the solutions
obtained at the singular points and at the ordinary point show overlapping regions of common validity and thus they may cover the
whole physical space when the appropriate matching conditions are applied (Appendix B).

Making the expansion of functions P, and Q, simlar to those given by equations (12) and (13), we find that the coefficients p,, and
q:, are given by

plll = —%[4pl(u—l) + 3p((n-2) + pl(n-S)] ] (42)
valid for alln > 3and with p,, = (1 + a,)2,p;, = —l and g,, = (5 — a)/4;and
qm = _%[6‘1:("- 1) + 7qi(n—2) + 4ql'(n-3) + ql(n—4)] ’ (43)
valid foralln > 4and with g, = (¢, — d))/2,q,, = -:¢c, — 3d})/2,q,; = (c; — |1d}/4and q,; = 4d,.
Then, the solution can be obtained as
L{&) =[C L\ (&) + C;Ly{E)]e ™", (44)
where
k)
L{=1+ szﬁ.,. & (45)
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and
L{)=¢+ Zzlﬁ.. & (46)

The expansion coefficients ¢, and i, can be evaluated from the following recursion relation:

i n-1 n=2
(Dins Vind = — { Z M[Dim; VimlPitn-m-1) + Z [oim; l/’m]‘lun—m—z)} ’ @7n
n(n - l) m=1 m=0

valid for all n > 2 and with coefficients [¢;o; ¢,,] and [¥/;0; ¥;,] being arbitrary constants. The coefficients ¢,, and y,, are evaluated
with the assumptions: (¢; = 1, ¢y = 0) and (Yo = 0, Y, = 1), respectively. In Figure 6, we plot the solutions (45) and (46 for the
velocity perturbations for different «,. It is shown that the results are very sensitive to the parameter «, and, even more important,
their range of validity significantly decreases for decreasing «,. In the limit of a, — 0, the range approaches zero and one does not
need to be concerned with the ordinary point solutions. In addition, the solutions are not symmetric about § = 1 (see Fig. 6a and 6e
and Figs. 6b and 6f). By comparing Figures 6c and 64, one may also find that the functions L, and L, for the velocity perturbations
show a 90° shift and have greatly different amplitudes(L,/L, = 70).

V. SELECTION OF PHYSICAL SOLUTIONS

In the previous section, we presented the solutions to the wave equation (9) obtained in the vicinity of two singular points and one
ordinary point and discussed the importance of the parameter ¢, = w,/w in determining the range of validity of the solutions. These
results are summarized in Figure 7, which shows that there is no one expansion that converges to the solution for the whole space
and that the expansions are different in the vicinity of the ordinary and regular singular points. That is, there is one general solution
that spans the whole atmosphere, but each of our three expansions converges to this solution over only a part of the atmosphere.
Even so, together these expansions constitute a full general solution because there is overlap between the adjacent regions of
convergence.

From our general solution, we seek two classes of physical solutions, the upward and downward waves excited above and below a
forcing plane. In this section, we find the upward and downward solutions in each of the three regions of convergence and show how
to match the adjacent solutions to obtain solutions that cover the whole atmosphere. We assume that the forcing plane is located at
the height in the atmosphere where § = 1 and consider the solutions in the upward and dowrward directions. One should note,
however, that the point § = 1 is not a special point in the atmosphere; in general, the matching procedure described in Appendix B
can be applied (o any location of the forcing plane and the solutions that cover the whole atmosphere are always obtained.

a) The Upward Direction

As discussed in § ITI, the upward waves are standing waves as a result of reflection on the density gradient. Far above the forcing
plane, the solutions are given by equations (15) and (20), which represent real functions describing standing wave solutions for any
arbitrary (but real) constants of integrations. However, as shown by equations (18) and (23), the functions %, and %, contain the
logarithmic term which makes these solutions infinite when g — 0. Therefore, we exclude these unphysical solutions by taking
C, = C4 = 0. This gives the physically acceptable solutions, describing finite-amplitude wave behavior far away from the forcing
plane. in the following form: u,(B, 1) = C, #(Ble™ " and b,(B, 1) = C, £ {B)e ™", which repr.sent the standing wave solutions for
real constants C, and C,. However, as shown in the previous section, these solutions cannot be extended down to the ordinary
point but instead roughly to the point 8~ 0.5. The solutions in the region of 1 > # 2 0.5 are described by the ordinary point
solutions (eq. [44]) and are plotted in Figure 6c. The full solutions for the velocity perturbations are presented in Figure 8 for the
whole space above the forcing plane. This plot requires matching the function #, to the solutions given by equation (44). The
matching point is chosen at f = 0.6 and the matching procedure is described in Appendix B.

The result, shown in Figure 8 represent standing wave solutions and, similar to the resuits of § IIla, we may again separate the
solution into two parts that correspond to the evanescent and regular standing waves. In the case considered here, this height
depends also on ¥ which means that the local critical frequency, introduced in § I1la for the upward compression waves 1n a cold
plasma, must be generalized to the case of T, > 0. In order to do so, we return to our original equation (9) and find that only Q,
shows a depesitence on the wave frequency w and it can be written as w?/(w] + w?). To check how our results depend on this ratio
of frequencies, we assume that © = w,, [with w,, = (0? + w})'’?] at the forcing plane (¢, = 0.707) and find that the solutions
represent evanescent standing waves (Fig. 9) for the whole space above the forcing plane. This illustrates that frequency w,, has the
same physical meaning as w, for purely transverse Alfvén waves, 1., it separates the evanescent and regular standing wave solutions
and determines the height at which wave refiection becomes dominant (see § I11a). Note also that for the foicing plane located at the
height where f§ < 1, the local critical frequency w,, reduces to w, which 1s in agreement with the results of § I1la. Thus, we may call
the frequency w,, the local critical frequency for the upward compression waves.

b) The Downward Direction

According to the results obtained in § I1Ib and IV, the solutions for the downward waves are given by equations (31) and (35) far
away from the forcing plane and by equation (44) close to the plane. The roots of the indicial equation presented 1n § [Vc show that
these solutions represent propagating waves when w > w, and evanescent waves in the opposite case. Because the result is
independent of any critical frequencies (either w,, or w,), the frequency w; 1s the cutoff frequency for the downward compression
waves. This cutoff frequency 1s the same (global) for the whole atmosphere and in this way 1s different than the local critical
frequency w,, introduced in the previous subsection for the upward compression waves.
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FiG. 6.—Example bass functions L, and L, for the velocity solution 1n the vicinity of § = 1 1n the model atmosphere with arbitrary 8, and T,,. In(a)and (b), L, 1s
plotted on the low-f side of 8 = 1 for two different parameters «, In (c) and (d), L, and L, are plotted for the same ,, note that as a resuit of smail a,, the solutions
are restncted to lower | ¢ | than in the previous panels Finally, in (e) and (f), L, is plotted on the high-f side for two different parameters z,.

The physicaily accepted (i.e., downward propagating) solutions for the downward compression waves are given by u,(x, t) =
CyZ3(e™ ™ and b,(x, 1) = C3Z; (y)e™*" which describe the propagating wave solutions for any real C, and C, with the
coefficients ¢ and  defined by equations (33) and (37), respectively. Note also that real parts of nonoscillatory terms in equations
(32) and (36) describe a decrease in the wave amplitudes required by the conservation of wave energy fluxes. The solutions close to
the forcing plane (vicinity of the nrdinary point) are given by equation (44) and are plotted in Figures 6e and 6f. The full solutions for
this half of the space where § < 1 are presented in Figu:e 10, which shows the propagating waves with decreasing amphtude. The
figure also demonstrates that the wavelength increases for the downward propagation (compare to Fig. 5a); however, the latter is a
superficial effect caused by using variable § instead of x. In order to plot the full solutions for the downward propagation, we
matched the function Z; to the solutions (44) at the point § = 1.3. The procedure described in Appendix B.
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F1G. 7.—Schematic presentation of the full solutions to the velocity wave equation in f space

V1. DISCUSSION

In this paper, we consider the behavior of vertical compression waves in an . *othermal atmosphere with a uniform horizontal
magnetic field and present, for the first time, the full analytical solutions to the wave equations obtained for both velocity and
magnetic field perturbations. The problems discussed here have already been studied by other authors (Summers 1976; Thomas,
1982, 1983; Campos 1985, 1987); however, their resuits and conclusions are incomplete in light of our results. The basic conclusion
from the previous studies is that the filtering of magnetoacoustic waves through the atmosphere is a purely compressive phenome-
non and that these waves behave identically to acoustogravity waves. Here, we show, however, that in the considered modet of the
atmosphere waves behave differently for upward and downward excitation and that only the downward waves behave in the way
found by Thomas and Campos.

In the steady state approach considered here, the upward waves are standing waves for any wave frequency. The standing wave
solutions can be spatially separated into two different parts: evanescent and regular standing waves. The height at which the
transition takes place can be evaluated from the condition @ = w,,, with w,, = (@? + @?)*/? being called the local critical frequency.
At heights where v < w,, reflection on the density gradient dominates in the wave behavior. The local critical frequency w,, ias ilic
same physical meaning as the frequency w, for the upward Alfvén waves in an isothermal atmosphere with uniform vertical
magnetic field. The critical frequency w,, increases with height in the atmosphere because of the increase in w, with height. Hence,
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Fic 8 —An example full standing wave solution for veloaity perturbations plotted in § space for the « pward compression waves, The forcing plane 1s located at
f = 1, and the matching point 1s 0.6.

FIG 9 -—An example full evanescent standing wave solution for velocity perturbations plotted in the 8 space for the upward compression waves. The forcing
plane 15 located at § = | which corresponds to wave frequency being the same as the local cnitical frequency w,, at the foraing plane. The matching point1s 04,
Because the wave 1s evanescent, this lustrates that w,, in the atmosphere with temperature T, > 0 corresponds 1o w, in the cold plasma case.
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the condition for strong reflection of a wave of frequency w is met above some height. This effect may be significant for the behavior
of the upward compression waves in a stellar atmosphere as it may lead to wave trapping in the atmosphere.

The discussion presenicu above concerus unly the steady state case which is reached when all transient effects vanish and a
standing wave pattern is formed. However, before this happens one may expect to see propagating waves in the upward direction.
These waves interfere with reflected waves propagating in the downward direction and form standing waves when the reflected wave
superposes on the upward propagating wave (An et al. 1989). For this transient phenomenon, the critical frequency w,, plays the
role of a local cutoff frequency defined at the height where the forcing plane is located (say z,). Thus, in order to excite the upward
propagating waves, the condition @ > w,(z,) must be satisfied; otherwise, the forcing plane excites nonpropagating (evanescent)
waves. These few brief statements only signalize more general problems in the propagation of transient waves which are, however,
beyond the scope of this paper.

For the downward direction, the waves are propagating waves for those frequencies that are higher than the acoustic cutoff
frequency, w,. In this respect, magnetoacoustic waves indeed behave like acoustogravity waves but only in the downward direction
with respect to the wave source. Thus, our results confirm, but also clarify Thomas and Campos’s conclusions. We should mention
that the acoustic cutoff frequency (or more precisely its ratio to the wave frequency, «,) becomes also an important parameter for the
standing wave solutions obtained in the upward direction. In general, this parameter determines the domain of validity of the
ordinary point solutions and in the limit of cold plasma (8 — 0) the domain approaches zero. Then, the singular point solutions
obtained at § = 0 cover the whole physical space and the form of the solution is identical to the solution describing Alfvén waves in
an isothermal atmosphere with uniform vertical magnetic field. In this limit, no cutoff frequency can be defined for the downward
direction and magnetoacoustic waves are always propagating waves.

To apply our results to solar (or stellar) physics problems, we must specify the wave source in the atmosphere. Assuming that the
major source of magnetoacoustic waves is the highly turbulent part of the solar convective zone (Musielak and Rosner 1987), then
the downward propagating waves become purely acoustic waves in deep solar layers where they can be refracted due to the
temperature gradient and may contribute to the observed solar global oscillations. These problems are beyond the scope of this
paper as the temperature gradient 1s not taken into account in our approach. Thus, our most important result for the solar (and
stellar) physics is that the upward propagating magnetoacoustic waves may also become trapped waves 1if the atmosphere at a
certain level is filled with enough nearly horizontal magnetic field. If this occurs in the photosphere, then magnetoacoustic waves
cannot transfer the energy required for the heating of solar (stellar) chromospheres and coronae. On the other hand, his trapping
effect might contribute to the observed small amplitude solar (stellar) p-mode oscillations.

We are indebted to D. H. Hathway and J. H. Thomas for their extensive comments on the manuscript of our paper. The research
has been supported by the NASA Space Plasma Physics and Solar and Heliospheric Physics Branches n the Office of Space Science

and Applications. C. H. A. has also been supported by NASA HQ Grant (NAGW-9) and Air Force Grant (AFOSR-88-0013). This
work was completed while Z. E. M. held an NRC-NASA/MSFC Research Associateship.
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APPENDIX A
LIMITS OF VALIDITY OF THOMAS'S SOLUTIONS

To show the limits of validity of the solutions obtained by Thomas (1982), we follow Nye and Thomas {1976) and, using their
notation, transform the wave equation (5) to the hypergeometric form:

2
x(l-x)%:ﬂl-zx)j—‘:—gzw:o, (A1)

where w is the vertical wave amplitude, x = — V3/V2, Q = wH/V,, and H is the density scale height. As shown by Thomas (1982),
this equation can be transformed to a form of Legendre’s differential equation by making the transformation & = 1 — 2x. This gives

d*w dw .
~EE 2 _r 2 02y =
{ é)déz 2 X Q'w=0, (A2)
and the solutions can be found as Legendre functions of zeroth order and of degree v defined by
v=—44(1 —4Q3)V2 . (A3)

According to Thomas, these are full solutions to equation (A2) which means that they cover the whole physical space including the
point & = 1 that corresponds to a very low-f (“cold ") plasma. In addition, he showed that in order to have propagating wave
solutions v must have a nonzero imaginary part, which requires 4Q> > 1 or @ > w,, and concluded that the cutoff frequency for
magnetoacoustic waves is not affected by the magnetic field and thereby is identical to the cutoff obtained for acoustic waves
propagating in a stratified medium.

It is shown in this paper that from a physical point of view, his conclusions are valid only for the downward (in the direction of
gravity) propagating magnetoacoustic waves and cannot apply to the upward waves. Here, we show that also from mathematical
point of view Thomas’s solutions are not valid in the vicinity of the point £ = 1. This results from the theory of differential equations
(Murphy 1960) showing that all solutions to equation (A2) diverge around ¢ = 1 for all real constants Q2 that cannot be given in the
form Q* = v(v + 1), with v being a nonnegative integer. As shown by equation (A3), this is the case considered here.

Let us disuss these problems in detail. From mathematical point of view, equation (A2) shows singular points at £ = 41 and o0
with roots of the indicial equation given by (0, 0), (G, 0) and (S + 1, —¢), respectively (Murphy 1960). The zeroth roots always lead to
a logarithmic term in one of the two solutions. The form of the second solution depends on whether v is a positive integer or not. In
the former case, a nonlogarithmic solution (given by a Legendre function) becomes a Legendre polynomial that converges for all §
including the point ¢ = 1 (e.g., Hochstadt 1986). However, in the latter case, Legendre functions do not converge in the vicinity of the
point £ = 1 and the solutions are given either by ascending powers of £ valid for all {§| < 1 (expansion about the singular point
& = +1) or by descending powers of £ valid for all | ] > 1 and corresponding to the singular point at £ = co (Murphy 1960). In the
case considered here, we are interested in the descending power solutions with v being a complex quantity and find that the point
& = 1 and its vicinity cannot be included in the solutions.

Thus, our major conclusion from this appendix is that Thomas'’s solutions must be given by the descending power solutions
(Legendre functions of noninteger degree) and that they do not cover the point £ = 1 and its vicinity. Because of this restriction, the
obtained solutions describe only downward waves as to describe the upward waves the full solutions for the upward direction have
to be given; the latter are missing in Thomas's approach and therefore any procedure to construct the upward solutions using
Thomas's results is mathematically flawed.

APPENDIX B
MATCHING THE SOLUTIONS

As shown in § V, we must match the solutions given in the form of series expansions. In general, the forms of the solutions to be

matched can be written as F(x) = Cof(x) and G{x) = C, g,(x) + C, g,(x), where C, , , are arbitrary constants. We assume that
Co = | and obtain the matching conditions in the form:

f(X) |x=xo = C! gl(x) |x=xo + C2 gZ(x)lx=xo ’ (Bl)

fl(x) |x=xo = Cl g'l(x) |x=xo + C2 g'z(x) 'x=xo ’ (BZ)

where x, is the matching point and the prime (') denotes the derivative with respect to x.
Now, we may evaluate constants C, and C, from equation (B1) and (B2). This gives

= f (X)9xx) = S (x)g'zl(X) , (B3)
§1(x)92x) = ¢1(x)g2(%) |x = v
and
C2 — j~(x) - Cl gl(x) (B3)
g2(x) x=x0
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Applying these results to the solutions obtained for the upward direction (see § V), we calculate

5B =2 20"4’2" g

0

LiB-1)= Y npsp—1r"

n=2

and

WB-1=1+ Zznwnw —1y

s (B4)
B =po
. (BS)
8=fo
(B6)
p=Bo

Then, assuming f, = 0.6 and using equations (B1) and (B2), we obtain C, = —0.0197and C, = —2.05.

For the downward propagation, we calculate

N )

— Blo;* = 1) sin [(a;z -

S @2n + s G,-)z

L) 2n+1
ven(3)] £ )

p=8o

(B7)

B =fo

Assuming that f§, = 1.3, we substitute equations (BS5), (B6), and (B7) into equations (B1) and {B2), and obtain C, = 0.242 and

C,=~204
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ABSTRACT

We have studied transient propagation of Alfvén waves in an isothermal atmosphere with constant gravity
and uniform vertical magnetic field as an initial-value problem using a time-dependent linear magnetohydro-
dynamic numerical model. The initial value approach allows us to undertake investigations not accessible to
analytic models, e.g., direct demonstration of partial reflection from the wave front propagating in an inhomo-
geneous medium, transient waves approaching the analytic solution, and direct demonstration of resonance at
certain driving frequencies.

Our results show that the Alfvén wave transit time from the wave source to infinity is finite and the wave
exhibits continuous partial reflection which becomes total reflection as the front approaches infinity. As the
reflected waves propagate down and interfere with the upward-propagating waves, a standing wave pattern
forms in the region of the interference, and the numerical solution approaches the analytic standing wave
solution as the reflected wave superposes completely on the upward propagating wave. As soon as complete
superposition is broken, the standing wave becomes a transient propagating wave. The total reflection causes
the waves tc be trapped in the cavity that extends from the wave source to infimty and in which the wave
energy is stored. We find a resonant frequency at which the amplitude of the stored wave energy increases

parabolically with time.

Our results suggest that the reflection of Alfvén waves (of sufficiently long period) from the outer corona is
an intrinsic phenomenon for any stellar atmosphere stratified by gravity and with an open magnetic field, and
that therefore such waves may be trapped in the stellar atmosphere.

Subject headings: hydromagnetics — stars: atmospheres — stars: coronae — Sun: atmosphere —

wave motions

f. INTRODUCTION

The propagation of Alfvén waves in the solar atmosphere
has been studied 1n connection with heating of the atmosphere
and solar wind acceleration. Since the solar atmosphere 1s
gravitationally stratified with gradients in both the tem-
perature and the magnetic field, the study requires abandoning
the WKB approximation, especially for long-period Alfvén
waves. The equation governing the wave propagation 1n a rea-
listic solar atmosphere is extremely complicated to solve ana-
lytically. Thus, for analytical studies, the problem has generally
been simplified by assuming a uniform magnetic field, uniform
gravity, and a one-dimensional atmosphere which varies only
along the direction parallel to gravity. Linear theory leads to a
second-order differential equation solved for the first time by
Ferraro (1954) and Ferraro and Plumpton (1958). With the
assumption of a steady sinusoidal time dependence. they
obtained a standing wave solution, which implies no wave (and
also no energy) propagation through the medium.

In order to avoid this difficulty, Hollweg (1972) divided the
atmosphere nto two parts that are characterized by different
scale heights. He imposed a boundary interface (transition
region) which divides the atmosphere into the chromosphere
and the corona. He specified ascending and descencing wave
solutions below the interface boundary, but only an ascending
wave solution above the boundary. He obtained the wave solu-
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tion for the whole atmosphere by matching the two different
wave solutions at the boundary and found a resonant pheno-
menon which shows a peak in the wave energy flux above the
boundary at certain frequencies. The resonant phenomenon
was believed to be due to wave reflection at the boundary and
was used to explain coronal heating and solar wind acceler-
ation Following Hollweg (1972), numerous authors (Hollweg
1978, 1984; Leroy 1980; Leroy and Schwartz 1982; Schwartz
and Leroy 1982; Leer, Holzer, and F13 1982; Schwartz, Cally,
and Bel 1984; Zugzda and Locans 1982; Rosner, Low, and
Holzer 1986) studied Alfvén wave propagation in the solar
atmosphere by dividing it into several layers. However, the
interpretation of the resonant phenomenon varied. Zugzuda
and Locans (1982) claimed that the resonant phenomenon is
due to an error in the procedure, and Leer, Holzer, and Fla
(1982) emphasize that the resonant phenomenon cannot be
considered as a mechanism of corcnal heating and solar wind
acceleration. In addition, the approach itself deserves
comment. First, imposing an artificial upper boundary for the
transition region exaggerates the reflectivity from the tran-
<ition region If we solve the wave equation with a smoothly
varying layer, we may find a lower reflectivity. Finally, the
assumption of a uniform atmosphere above the upper bound-
ary neglects the propagation of Alfvén waves 1n the gravita-
tionally stratified upper corona. We therefore believe that
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Alfvén wave propagation in the upper corona has not yet been
properly treated.

Because of the importance of Alfvén wave propagation
through the transition region into the corona for coronal
heating and solar wind acceleration. we need to study such
wave propagation in 2 more realistic solar atmosphere with a
realistic corona, transition region, and chromosphere.
However, before we consider this problem, we must first under-
stand how Alfvén waves propagate in the corona. Since an
analytic study with a steady sinusoidal time dependence pro-
duces only a standing wave solution, we use a time-dependent
magnetohydrodynamic (MHD) numerical simulation method
to get more physical insight into the wave behavior. The
numerical calculation enables us to study transient MHD
wave propagation through an initially unperturbed medium
and to see how the wave character (i.e., wavelength, amplitude,
propagation speed, etc.) vary in response to the nonuniform
medium, We also study how the propagating wave is contin-
uously reflected and how the wave undergoes total reflection as
it propagates to infinity. Finally, for better understanding of
observations, it is important to study transient wave propaga-
tion, since the wave drivers in the Sun may not have a long
enough lifetime to reach a steady state.

In this paper we restrict our attention to Alfvén waves pro-
pagating in an isothermal and stratified atmosphere with con-
stant gravity and uniform vertical magnetic field. We will first
review published analytic solutions and then present the
numerical results.

il. REVIEW OF ANALYTIC SOLUTIONS

As shown first by Ferraro and Plumpton (1958), fuil analytic
solutions to the lincarized Alfvén wave equation can be given
in terms of Bessel functions. However, in order to obtain these
solutions, a simple model has to be assumed; namely, one must
consider an isothermal and stratified medium with constant
gravity and with uniform vertical background magnetic field.
Under these conditions, the plasma pressure and density can
be given in the following form:

p=poe, p=poe ™, (1)
where p, and p, are the values of density and pressureatz = 0,
respectively; note that we are using the Cartesian system with
x the horizontal and z the vertical coordinate. The Alfvén
velocity is given by

Va = Vop ¥, @

where V,, is the Alfvén speed at z = 0 and 4 is defined as the
inverse of the gravitational scale height, H, = RT/g. Here R is
the gas constant, T is the temperature, and g is gravitational
acceleration. Then, after Ferraro and Plumpton (1958),
assuming steady sinusoidal time dependence, the general solu-
tion for the velocity and magnetic perturbations V, and B, is
given by

Vdz, 1) = [A Jolw/wa) + 4, Yo(w/wa)le™ ,
Bz, 1) = pi*[As J(w/wp) + Ay Y(w/w,)]e™ . 3)

Here, J, (J,) and Y, (V) are the Bessel functions of the first
and second kind of order zero (first), respectively. 4,, 4,, 4;,
and A, are constants to be determined by the boundary condi-
tions, and w, is defined by

wp = Vo/2H, . @
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The explicit form of the argument of the Bessel function, w/w,,
is

w w
—=— g2

WA Wop

where wo, = Vou/2H, .

Note that for any real constants 4, and A4, (or 4; and A4,)
the solution (3) represents a standing wave solution (sce § Ila).
This solution has been extensively studied in the literature
(Hollweg 1978; Leroy 1980; Leer, Holzer, and F13 1982;
Rosner, Low, and Holzer 1986) in the context of propagating
and reflecting Alfvén waves. It has been shown that there exists
a characteristic height for a given w, which separates the solu-
tion into two parts: sinusoidal (w 2 w,) and nonoscillating
(w < w,) wave solutions (Campos 1987),

a) Ascending Propagation

In this section we will consider why the analytic solution
shows a standing rather than a traveling wave and will
comment on previous work attempting to avoid the standing
wave solution. First of all, however, we must specify the region
of wave generation and the direction of the wave propagation
in order to check whether the solution (3) diverges as z — co. If
we assume that the wave is generated at z = 0 and propagates
to z= oo, this leads to fy(w/w,)— oo as the argument
approaches zero, and the condiiiun 4, = 0 is necessary to
prevent infinite wave energy infinitely far from ths source,
which is physically unreasonable. With 4, =0 and A4,
nonzero, equation (3) describes a standing wave solution.

For an isothermal atmosphere with constant gravity, plasma
pressure and density decrease exponentially, as shown by
equation (1). Hence the Alfvén wave velocity increases expo-
nentially with height, and the wave reaches infinity in a finite
time. Also, it eventuaily becomes totally reflected because the
wavelength becomes infinitely longer than the density scale
height. The Alfvén wave transit time to infinity can easily be
calculated from equation (2), giving

tm=J. 'Z=2tA, (5)

wheret, = H [V,, .

Hence, physicaily, there is interference between the
ascending and the reflected descending wave, and this consti-
tutes the standing wave expressed by equation (3) with A; = 0.
In other words, the standing wave solution of Ferraro and
Plumpton (1958) is unavoidable under the assumption of
uniform gravity, uniform magnetic field, and steady sinusoidal
time dependence.

Previous authors attempted to avoid the standing wave sol-
ution by dividing the atmosphere into two parts—corona and
chromosphere—and by specifying the outward propagating
solution above the interface boundary (transition region);
Hollweg (1972) and Zugzda and Locans (1982) specify a
Hankel function representing a wave propagating from a wave
source (see eq. [9] for the Hankel function) and Schwartz,
Cally, and Bel (1984) and Leer, Holzer, and F1a (1986) impose
an ascending plane wave solution above the interface bound-
ary. The imposition of an ascending plane wave solution
implies that the density scale height is infinite above the inter-
face boundary, i.e., the reflection due to the finite density scale
height is neglected. In addition, the specification of the Hankel
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function might not properly describe wave propagation in the
upper corona because the function diverges as z = 0.

In order to study the propagation of Alfvén waves in the
corona, we will employ two approaches: (1) Use a time-
dependent MHD simulation method to study wave propaga-
tion to infinity, wave reflection due to the density gradient, and
interference between the outgoing and incoming waves. (2)
Abandon constant gravity and study the wave propagation in
spherical geometry with gravity g ~ 1/r2. In this paper, we give
results from the first approach. We plan to deal with the
second problem in a separate paper.

b) Descending Propagation

The wave solution, equation (3), is also valid for descending
wave propagation, but we have to determine the coefficients A,
and A, from the boundary conditions. If we assume that the
wave is generated at z = 0 and propagates to z = — co, the
asymptotic solution of the Bessel functions, J,4(£) and Yy(¢), for
¢ = w/wy - o (when z ~» — o0) becomes finite. How can we
then determine A, and A, ? We believe that the answer liesina
physical, rather than mathematical, argument. If the descend-
ing Alfvén wave transit time to z = — oo is infinite, the wave is
a traveling wave with one of 4, and A, being real and the
other imaginary. We can calulate the transit time of a descend-
ing wave from equation (5) by integrating from z=0 to
z = — o0 and can easily show that the transit time is infinity,
implying a traveling wave. The wavelength of a descending
wave decreases exponentially, and the wave can be approx-
imated to a WX B wave. Thus, the propagation of descending
waves will not be considered further in this paper.

{II. TRANSIENT WAVE PROPAGATION

To study transient wave propagation, we solve the time-
dependent one-dimensional linearized ideal MHD equations
numerically for an oscillatory transverse perturbation at the
lower boundary (An, Suess, and Wu, 1989). The equations are

TRANSIENT ALFVEN WAVES IN ISOTHERMAL ATMOSPHERE

written in dimensionless form by normalizing velocity with V;,
of equation (2), and by normalizing magnetic field and pressure
with their values at z = 0. The height is normalized by density
scale height H_ and time ¢ by t, of equation (5). We assume that
gravity is constant and the magnetic field is uniform and is
parallel to gravity, and that the wave propagates only along
the field lines. Since the Alfvén velocity increases exponentially
as the wave propagates upward, we will violate the Courant-
Friedrichs-Lewy (CFL) numerical stability condition unless we
increase the grid size exponentially. For this reason, we trans-
form the coordinates from z to n, where 7 is defined by
n=e,

™

Here, A becomes unity for the equations in dimensionless form.,

At the lower boundary, we impose an oscillatory transverse
velocity perturbation with

v, =001 cos wt , (8)
which excites an Alfvén wave, and specify that the perturbed
magnetic field is zero at the upper boundary—which is physi-
cally reasonable because the magnetic field behaves as a rigid
bar because of finite magnetic field strength and zero density at
n=0. The transformation presented by equation (7) has
several advantages. First, the uniform gnid size An, since Az
increases exponentially and the transit time of the Alfvén wave
across Az is constant for the exponentially increasing Alfvén
speed with height, we can avoid the numerical instability.
Second, for upward propagation we can cover 0 <z < o in
the computing domain and study in detail wave reflection fiom
infinity. Third, we can impose nonartificial boundary condi-

tions at z = co. The following results are all based on the 5
coordinates.

a) Ascendirg Wave Propagation

Figures 1a and 1b show the computed upward-propagating
Alfvén wave with frequency w = 4n. The perturbation ampli-
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FiG. 1.—Upward transient Alfvén wave propagation with frequency w = 4n in an atmosphere stratified by umiform gravity and having a uniform vertical
magnetic field The solid hine 1s for the velocity, and the dashed line 1s for the perturbation magnetic field amplitude at (a) ¢ = 1 5 and (b) ¢ = 20 The honzontal axis

stands for the height withn = 0 and 5 = | corresponding to z = o and z = 0, respectively The vertical axis represents the amphtudes of velocity and magnetic field
normalized by the maximum value at cach time The wiggles in the first half-wavelength are due to the abrupt initiation of the wave in our simulation.
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tude is finite at ¢ = 0 and oscillates with time. Because of the
finite amplitude at ¢ = 0, there is a noticeable transient wave
front followed by a smooth oscillatory wave train. Since we
give the perturbation at z = 0, the wave propagates fromn = 1
to n = 0. The solid and dashed lines represent the velocity and
magnetic field perturbations, respectively. Before the waves
reach n = 0 (i.e., 2 = ) the velocity and magnetic field pertur-
bations propagate with a 180° phase difference. At ¢t = 2 the
magnetic wave reaches n =0 as predicted by equation (5).
(Note that ¢ is normalized by t, in our dimensionless equa-
tions.)

Figures 2a, 2b, and 2¢ show the velocity wave propagation at
t = 2.890, 4.00, and 4.99, respectively, after the initial transient
front reflects from n = 0. In each figure, the solid line is the
analytic standing wave solution, and the dotted line is the
numerical traveling wave solution. The amplitude is normal-
ized by the maximum value at each time. At ¢t = 2.890, the
initial transient has reflected back to # = 0.4, and the trainis a
superposition of reflecting and ascending waves forming the
analytic standing wave solution between n = 0 and = 0.4. At
0.4 < < 1.0 the ascending waves propagate upward (toward
n = 0) without being interfered with by the reflecting waves,
which have not yet reached this region. At ¢t = 4.0 the initial
transient front returns to n = 1, forming a complete super-
position with the ascending wave, and the whole region is well
represented by the analytic standing wave solution. As the
reflected wave reaches n = 1, it is reflected and interacts with
the oscillating wave source. A fraction of the energy of the
incident wave is absorbed by tue wave suurce ii there is a phase
difference between the two. At ¢ = 4.99, the initial transient
front has reflected from n = 1 and propagated upward to reach
n = 0.5. Because of the initial transjent wave train, completc
superposition is broken and the numerical solution becomes a
transient propagating wave, departing from the analytic stand-
ing wave solution at 0.5 < # < 1. Our numerical result shows
that complete superposition occurs at t = 4, 8, 12, and so forth,
at which times the numerical solution reproduces the analytic
standing wave solution. When complete superposition is
broken at other intermediate times, the numerical solution is
simply a transient propagating solution, Figure 3 shows that
the magnetic perturbation also approaches the analytic stand-
ing wave solution as the reflected initial transient front returns
to 7 = 1 and forms a complete superposition on the ascending
wave. The solid line is the analytic standing wave solution for
the perturbed magnetic field (with 4, = 0 in eq. [3]), and the
dotted line is the numerical wave solution. The wave is also a
transient propagating wave when complete superposition is
brokenatt = 4.

b) Wave Reflection
i) Partial Reflection

Much effort has been devoted to the caiculation of the reflec-
tion coefficient of an Alfvén wave propagating through a non-
uniform medium. A commonly used method is to divide the
atmosphere into several layers and apply the matching bound-
ary conditions at each layer (e.g., Hollweg 1978). From analytic
studies, many authors (Leroy 1980; Leer, Holzer, and Fla
1982; Rosner, Low, and Holze: 1986) have suggested that there
is continuous partial reflection for waves with wavelength
longer than the density scale height. Since the analytic solution
with steady state sinusoidal time dependence, ¢'“*, holds only
for t > 1 and does not describe the wave propagation through
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F1G. 2.—The transient propagating wave approaches and departs from the
analytic standing wave solution as the transient wave train interferes com-
pletely with the ascending wave and breaks the complete superposition. The
solid curve 1s the analytic standing wave solution, and the dashed curves are
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t = 4,0 the imual transient front returns to n = 1, forming a complete super-
position with the ascending wave, and the whols region becomes the analytic
standing wave solution. At ¢ = 499 the initial transient front reflects from
n =1 to n = 0.5 and breaks the complete superposition, showing a transient
propagating wave in the region.
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FiG. 3.—The magnetic wave also approaches the analytc standing wave
solution as the initial wave front reflects back to # = 1 and interferes with the
ascending wave at ¢ = 4. The solid curve < the analytic solution, and the
dashed curve 1s the numerical solution. At t = 4.99 the magnetic wave also
shows a transient propagating wavein 0.5 <n i, .

an undisturbed medium, the continuous partial reflection from
a propagating wave cannot be properly studied by the analytic
approach. Here we study how energy is reflected as the wave
propagates to z = oo by calculating the magnetic and kinetic
energy in every half-wavelength at specific intervals in time. If
there is no reflection, the energy in each half-wavelength
should be the same. Figures 4a and 4b show the kinetic and
magnetic energy in each half-wavelength for t = 1.40, t = 1.65,
and ¢ = 1.90, which are a half-period apart for the frequency
w = 4z. The vertical axis is the magnitude of the energy, and
the horizontal axis represents the position of each wavelength
at a specific time interval. For example, for t = 1.65, 1 stands
for the position of the first half-wavelength and 6 means the
position of the next to last half-wavelength counted from n = 1
(or z = 0). The energy of the last half-wavelength is not con-
sidered here because it is strongly disturbed by the transient
effect of the wave front. Since the times are a half-period apart,
the position of a half-wavelength designated by a number on
the horizontal axis is the same for the three different times.
Figures 4a and 4b show the oscillatory change of the kinetic
and magnetic energy between adjacent half-wavelengths which
is superposed on the gradual decrease of the energy from the
first to the last half-wavelength. The oscillatory change of the
energy between adjacent half-wavelengths is amplified as the
wave front moves closer to n = 0, as we see by comparing the
energy change at ¢ = 1.4 and ¢ = 1.65. At t = 1.9, the oscil-
latory change of the energy is noticeable even between the first
and second half-wavelengths, and the energy difference
between the seventh and the sixth is significant: a 3.6%
decrease for kinetic energy and a 7.2% increase for magnetic
energy. At t = 1.98, the kinetic and magnetic energy changes
between the seventh and the sixth are about twice as large as
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the changes at t = 1.90, while at ¢ = 1.40 the magnetic energy
of the sixth increases over the fifth by 0.6% and the kinetic
energy decreases by 0.5%.

To interpret these results, we ask the following questions:
Are the oscillatory changes in magnetic and kinetic energy due
to partial reflection? If so, then why does the oscillatory behav-
ior of the magnetic energy have 180° phase difference from the
kinetic energy?

As the wave front passes through heights where the wave-
length is shorter than the density scale height, the wave sees the
atmosphere as a nearly uniform medium and undergoes negli-
gible reflection. As the wave front moves to the height where
the wavelength is longer than the scale height, the wave sees
the medium as nonuniform, and partial reflection occurs. At
t = 1.45, the wavelength of the wave front with @ = 4nis about
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F16. 4.—Vanauon of (a) magnetic and (b) kinetic wave energy in cach
half-wavelength, for different times, due to continuous reflection. The numbers
on the horizontai axis stand for the position of each half-wavelength at each
time, with a higher number designating a half-wavelength closer to the wave
front, which is propagating from right to left. The verucal axis stands for the
magnttude of the energy in dimensionless form. These plots show that because
of continuous reflection the energy difference between the sixth and seventh
half-wavelengths increases significantly after ¢ = 1.90. The magnetic energy
ncrease and the kinetic energy decrease 1n the seventh compared with ths sixth
haif-wavelength are due to the fact that the medium at the wave front behaves
approxsmately as a ngid boundary for the ...agnetic wave but as a free bound-
ary for the velocity wave,
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1.8 times the density scale height and noticeable partial reflec-
tion may occur. We therefore believe that the kinetic and mag-
netic energy differences between the fourth and fifth
half-wavelengths at t = 1.45 are due to the partial reflection.
We note that the increment of the magnetic energy and the
decrement of the kinetic energy of the fifth over the fourth are
due to different behaviors in the perturbed magnetic field, B,,
and velocity, v,, near the wave front. Since the magnetic fisld
strength 1s uniform, while the plasma density decreases expo-
nentially with height, the magnetic tension force becomes
larger than the inertia force as the wave front propagates
upward. Thus, the medium at the wave front eventually
behaves as a rigid boundary for the magnetic field but as a free
boundary for the velocity. This causes the reflected magnetic
wave to have a 180° phase difference from the upgoing mag-
netic wave, and the reflected velocity wave to have the same
phase as the upgoing velocity wave. Since the fifth half-
wavelength for ¢ = 1.4, the sixth for ¢t = 1.65, and the seventh
for t = 1.90 are just behind the wave front and have the wave
amplitude of oppostite sign to the ampiitude of the front, the
reflection from the front causes the magnetic amplitude (and so
the magnetic energy) to increase and the velocity amphtude
(and so the kinetic energy) to decrease at the half-wavelength
next to the frent. As the reflected wave propagates downward.
it increases and decreases the amplitudes of lower half-
wavelengths alternately, causing the oscillatory change of
kinetic and magnetic energy. At ¢t = 1.9, the wave front passes
1. = 0.04, at which point w/w, = 1 and the energy differences
between the seventh and the sixth half-wavelengths become
significant For w/w, < 1, the Bessel function J(w/w,) has no
zero point, so there are no nodes between n = 0 and #,. Note
that n. corresponds to a finite height z,, above which the
plasmas oscillate in the same phase. Thus, the physical
meaning of 5, for transient wave propagation is as follows: As
the wave front passes over 7, the wavelength becomes more
aan 10 times longer than the density scale height, resuiting in
strong continuous partial reflection. This leads to total reflec-
tion of the upward wave train and sets up a nonoscillating
standing wave above the cntical height. By comparing the
energy differences between the sixth and the seventh half-
wavelengths for ¢t = 1.90 and ¢ = 1.98, we find that reflection
increases rapidly once the wave front passes over n.. As the
wave front reaches infinity, the wavelength becomes infinite
and partial reflection becomes total reflection.

Since we include artificial viscosity 1n our numerical model,
the energy difference between each adjacent half-wavelength
may be due to viscosity rather than to partial reflection. In
order to understand the effect of viscosity on the energy differ-
ences. we vary the wave frequency and viscosity coefficient.
Figure 5 shows the kinetic energy change at each half-
wavelength at t = 1.9, The dotted line is for w = 4r, and the
sohid lines are for w = 8n. The dimensionless artificial viscosity
coefficient. v, 1s specified in the figure. The left axis shows the
wave energy for w = 8r and the right axis shows the energy for
w = 4n. Since the wavelength for w = 8r is half the wavelength
for w = 4n, the first and second half-wavelengths of w = 8n
have the same position as the first half-wavelengths of w = 8x
have the same position as the first half-wavelength of w = 4.
In order to take this into account, the tower horizontal axis
shows the position of each half-wavelength for w = 8n, while
the upper horizontal axis is for w = 4n. By comparing the
results for w = 4 and 8x and v = 0.0002, we can se¢e the foi-
lowing. First, the energy difference between the {4th and the
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13th half-wavelengths for @ = 8n is 2%, which is about half the
difference for o = 4n. Second, the oscillatory change of the
energy for @ = 4 is larger than for w = 8n; for w = 4n there is
a noticeable oscillatory change above the third half-
wavelength, while for w = 8n the noticeable change occurs
abeove the minth which corresponds to the fifth for @ = 4n. The
lower oscillatory change for w = 8= is due to less reflection.
However, the continuous decrease of the energy from the first
to the last half-wavelength is more significant for w = 8xn than
for w = 4n. If the decrease were due to partial reflection, then
the resvlt would contradict our physical argument that a
longer wavelength undergoes more reflection. For shorter
wavelengths, the wave energy damping due to the artificial
viscosity is higher, causing more rapid decrease of the energy
with height. In order to further confirm the effect of artificial
viscosity, we double the magnifitude of the viscosity coefficient
for @ = 8n. Figure 5 shows that the oscillatory changes for
v =0.0002 and v = 0.0004 are nearly identical, but the contin-
uous decrease of the encrgy from the first to the last half-
wavelength for v=00004 is more significant than for
v = 0.0002. This resulits confirms that the continuous decrease
of the energy from the first to the last half-wavelength is due to
viscous dissipation, and the continuous reflection shows up as
the osciilatory change of the energy superposed on the contin-
uous decrease due to the artificial viscosity.

it} Total Reflection and Interference

In the previous section, we found that the ascending waves
undergo total reflection, causing them to be trapped in a cavity
extending from infinity to the wave source. In this section we
will study the transient nature of wave trapping and inter-
ference for various wave frequencies. This study is motivated
by the resuits of Hollweg (1972, 1978) showing a resonant
phenomenon for certain wave frequencies, those for which
Jolw/w,) = 0. Since the atmosphere is essentially a cavity with
upper boundary at n = 0, sumilar resonant phenom=na may
occur in our numerical solutions for the resonant frequencies
found by Hollweg.

First, we generate waves with frequency w = 6.65 for which
Jy(wjw,) = 0 at z = 0. With this frequency Jy(w/w,) at z==0
has a local maximum value. Figure 6a shows the time variation
of velocity amplitude at n =0.5. The figure shows greatly
reduced ampiitude between t = 7 and t = 9. The magnetic field
amplitude shows a time variation similar to that of the veloc-
ity. We interpret the strong transient vanation of the ampli-
tudes to be due to destructive interference between the upward
and reflected downward waves. Figure 6b presents the time
variation of the kinetic energy integrated over the whole pro-
pagation region, demonstrating severe destructive interference
betweent =4andt =8,

Next, we generate the wave with frequency w = 7.45 for
which the zeroth-order Bessel function, the solution of per-
turbed velocity (eq. [3] with A, = 0), becomes zero atn = 1 (or
2z =0). Figure 7a shows that whenever the ascending wave
interacts with the reflected descending wave, the velocity
amplitude at n = 0.5 increases approximately linearly with
time, 1implying that there 1s always constructive interference.
The magnetic perturbation shows a similar tendency. The con-
tinuous constructive interference at this frequency 1s dramat-
ically seen in Figure 7b, which shows the time variation of
kinetic energy integrated over the whole propagation region.
The figure shows that the amplitude of the kinetic energy
increases with the square of time; all the input energy 1s stored
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amplitude increases nearly linearly with time. (b) Time vanation of kinetic energy integrated from the wave source to infinity with frequency w = 7.45. Because of

constructive interference (or resonance), the ampiitude increases as the square of time.

in the cavity. This continuous constructive interference resem-
bles the resonant phenomenon found by Hollweg (1972, 1978),
who showed that the peak of transmitted energy density is at
ths trequencies for which Jo(w/w,) =0 at 57 = 1. The ampli-
tude of magnetic energy increases as the kinetic energy, but
with a 180° phase difference.

We believe that the resonant phenomenon found in this
study is essentially the same as that found by Hollweg (1972,
1978) studying Alfvén wave propagation from the chromo-
sphere into the corona. For w = 7.45 the amplitude of the
analytic solution of velocity at z =0 is nearly .¢ro, but we
force the velucity at the wave source to oscillate with a finite
amplitude. As the initial wave front reflects back and interferes
with the ascending wave, the solution becomes the analytic
standing wave shrwn 1 Figure 2. A characteristic of the analy-
tic standing wave solution is that if we increase the amplitude
at z = 0, the amplitude above z = 0 increases proportionately.
However, the amplitude of the propagating wave does not
immediately go to the analytic value (about 10> times the
initial amplitude) because it takes time for the perturbation to
reach all heights. During that time, the ascending and descend-
ing waves interfere constructively to increase the amplitude
continuously. It will take about 2 x 10* wave periods for our
numerical peak to reach the analytic value. On the other hand,
for w = 6.65 the ampiitude of the analytic solution for velocity
is a local maximum at z = 0. As the wave source is forced to
oscillate, the amplitude at z = 0 decreases below the analytic
value, which decreas the amplitude of the analytic solution
above = = 0 proportionately. Again, the amplitude of the tran-
sient wave does not decrease to the analytic value immediately.
The ascending and reflected descending waves continuously
interfere with each other to decrease the amplitude.

1V. DISCUSSION AND CONCLUSION

We have studied Alfvén wave propagation in an isothermal
and stratified atmosphere with constant gravity and uniform
vertical magnetic field. The problem dates back to Ferraro and
Plumpton (1958), but there has been confusion because

Ferraro and Plumpton’s solution is a standing wave solution,
which seems unrealistic for the solar atmosphere. Many
attempts have been made to avoid the standing wave solution
and obtain a realistic traveling wave by dividing the atmo-
sphere into two parts, corona and chromosphere, and by
specifying an ascending traveling wave solution in the corona.
Here, we have concentrated on understanding the wave propa-
gation by reviewing the analytic solutions anc physically inter-
preting them by studying the wave propagation using a
time-dependent MHD numerical model.

We find that the analytic standing wave solution of Ferraro
and Plumptun with steady sinusoidal oscillations is unavoid-
able for an isothermal atmosphere with constant gravity and
uniform vertical magnetic field. This atmosphere has an expo-
nentially decreasing plasma density and an exponentiaily
increasing Alfvén speed. This results in finite transit time of the
Alfvén wave to infinity and total reflection. The steady sinus-
oidal time dependence for the perturbed quantities in the
analytic study is valid only after sufficient time has elapsed for
the outgoing and reflecting waves to interact to form a steady
standing wave. All attempts to avoid the standing wave solu-
tion have resorted to specifying upward-propagating waves at
the upper boundary or a discontinuous atmosphere which sets
the character of the solutions. We, as an alternative, studied the
wave propagation in a continuous atmosphere by using a time-
dependent linear MHD numerical model.

Our numerical results reveal that as the wave front
approaches infinity, partial reflection due tu the density gra-
dient continuously increases. As the wave front reaches infinity,
the reflection becomes total. The transient wave front reflects
back, leaving a steady standing wave train behind. We have
compared the standing wave train with the analytic solution
and found excellent agreement. We found a noticeable partial
reflection as the wave front approaches the height at which
w < w, and above which the plasma oscillates in the same
phase. In other words, there is noticeable continuous reflection
when the wavelength is longer than density scale height
because the wave then sees the atmosphere as a rapidly chang-
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ing medium. When the wave front approaches infinity, the
wavelength becomes infinite and the wave sees the medium as
a discontinuity, causing total reflection. The total reflection
causes the waves to be trapped in a cavity, extending from the
wave source to infinity, in which the wave energy is stored. We
find that there 1s a resonant frequency at which the stored
energy increases with the square of time. We suggest that the
resonant phenomenon in this study is the same as found by
Hollweg (1972, 1978), who calculated the peak of energy flux at
the .:sonant frequency to be several orders of magnitude
fugner than the value at a nonresonant frequency. It will take
about 2 x 10* wave periods for our numerical peak to reach
the analytic vaiue, by which time our linear approximation
breaks down. Our recent study for nonlinear Alfvén wave pro-
pagations shows that the resonant amplitude grows to about
20 times the nitial value and becomes saturated and transient
propagation continues. The study implies that the resonance
should be treated nonlinearly and is physically important only
when the hfetime of the wave source is long enough.

Zugzda and Locans (1982) suggested that there would be no
resonance peak in transmitted energy if we specified unit wave
energy flux rather than unit velocity; at a large reflection coeffi-
cient 1n the lower atmospheric layers, there arse nearly stand-
ing waves with a node at the lower boundary (z = 0) for
resonance frequencies. Zugzda and Locans claimed that if we
give a forced oscillation with a unit velocitv, the velocity above
the lower boundary will be proportionately high, but with a

ait cnergy flux the velocity will not be higt.. However, we note
that the amolitude at the lower boundary is finite, if not unity,
for the umt énergy flux. As long as the velocity amplitude at the
lower boundary 1s finite, no matter how small it is, the velocity
amplitude above the boundary will approach the analytic
value of a resonance peak for the resonance frequencies. In
other words, we will find resonance peaks of Hollweg even if
we specify unit energy flux rather than unit velocity. It is not
clear why Zugzda and Locans (1982) did not find the reson-
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ance, even though their approach is similar to Hollweg's for
the calculation of the reflectivity.

We have demonstrated the accuracy of our numerical simu-
lation method by its close reproduction of the analytic solu-
tions for vertical Alfvén waves in an isothermal atmosphere
with constant gravity. This means that the same simulation
method will be valid for study of MHD wave propagation in
more realistic stellar atmospheres.

Recently, we have studied fast-mode wave propagation in an
atmosphere stratified by a uniform gravity and magnetized by
a uniform horizontal magnetic field (Musielak et al. 1989) ana-
lytically. The results demonstrated that the ascending fast
mode also undergoes reflection in the corona, implying that
the reflection is a common phenomenon for both fast and
Alfvén waves propagating upward in a stratified stellar atmo-
sphere. Even though the density of a real atmosphere might
not decrease to zero at infinity, as for the uniform-gravity case,
the density stratification can cause the wavelength of the waves
to be much longer than the density scale height at some loca-
tion in the corona. Then, the waves begin undergoing contin-
uous partial reflection as they propagate above that height.
This partial reflection is totally neglected by authors imposing
only outgoing wave solutions at the upper boundary. We
believe that the possibility of partial reflection of the MHD
waves in the corona may be important for coronal heating and
solar wind acceleration.
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IV. SOLAR INTERPLANETARY COUPLING STUDIES
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with the initiation of solar disturbances propagating into interplanetary

environment and one paper in J. of Geophysical Research describing the

interactions of the propagating plasmoid and solar wind in three-dimensions.

Shear-Induced Instability and Arch Filament Eruption:
An MHD Numerical Simulation in Solar Phys., (to appear)
1991.

Model Calculations of Rising Motions of Prominince Loops
in Solar Phys. (to appear) 1991.

A Time-dependent, Three-dimensional, MHD Numerical Study

of Interplanetary Magnetic Draping Around Plasmoid in

the Solar Wind in J. of Geophysical Res. (to appear)
1991.
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ABSTRACT

We investigate, via a two-dimensional (nonplanar) MHD
simulation., a situation wherein a bipolar magnetic field embedded
in a stratified solar atmosphere (i.e. arch-filament-like
structure) undergoes symmetrical shear motion at the footpoints.
It was found that the vertical plasma flow velocities grow
exponentially leading to a new type of global MHD-instability
that could be characterized as a "Dynamic Shearing Instability",
with a growth rate of about +8 V,a, where V, is the average
Alfven speed and a~! is the characteristic length scale. The
Jrowth rate grows almost linearly until it reaches the same order
of magnitude as the Alfven speed. Then a nonlinear MHD
instability occurs beyond this point. This simulation indicates
the following physical consequences: the central loops are
pinched by opposing Lorentz forces, and the outer closed loops
stretch upward witﬁ the vertically-rising mass flow. This
instability may apply to arch filament eruptions (AFE) and
coronal mass ejections (CMEs).

To illustrate the nonlinear dynamical shearing instability,
a numerical example is given for three different values of the
plasma beta that span several orders of magnitude. The numerical
results were analyzed using a linearized asymptotic approach in
which an analytical approximate solution for velocity growth is
presented. Finally, this theoretical model is applied to

describe the arch filament eruption as well as CMEs.
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1. INTRODUCTION

More than a gquarter century ago, Gold and Hoyle (1960)
suggested that horizontal photospheric motion can move the
footpoints of magnetic field lines and twist the flux tubes
because of the highly electric conducting plasma at the
photospheric levels. A number of investigators (Tanaka and
Nakagawa, 1973; Low and Nakagawa, 1975; Low, 1977; Klimchuk,
Stur~ock and Yang, 1988:; Klimchuk and Sturrock, 1989) studied the
evolution of force-free fields and its role in energy storage
(build-up) for solar flares.

31l of these studies were limited to the case of
magnetostatics; self-consistent dynamical effects were ignored.
Recently, Wu et al. (1983, 1984, 128¢) grescnted a self-
consistent MHD model for the purpose of examining flare energy
build-up and wave-mass interactions due to shear and converging-
diverging motions at the photospheric level. Most recently,
Mikic et al. (1988) and Biskamp and Welter (1989) have presented
numerical results on the dynamical evolution of a magnetic arcade
type due to shear motion. However, their models are restricted
to symmezric boundary conditions, while in this study self-
consistent boundary conditions were used (see, for example, Wu
and Wang, 1987; Nakagawa et al, 1987).

In this paper, we use the time~-dependent MHD simulation
model devised by Wu et al. (1983) to reveal a nonlinear solution
for the evolution of the magnetic field configuration driven by

shear motion. In this solution, we find that the plasma velocity
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in the vertical plane perpendicular to the shear, grows
exponentially in a process which can be analytically described by
a linear MHD instability. This upward velocity steadily
increases until it reaches the average Alfven speed. At later
times, a nonlinear instability sets in. & field line pinch
occurs in the lower shear region in the numerical results. At
the same time, mass and field line expulsion appears in higher
parts of the region and the closed field tends to open locally.
We suggest that these new effects (i.e., mushroom cloud-like
flow, pinch and expulsion) can explain the formation of current
sheets, the opening of a closed bipolar field, and the ability of
particle streams to escape from the solar surface. Specifically,
we suggest that this model applies to the eruption cf arch
filament systems (AFEs) and their relation to non-flare-
associated coronal mass ejections (CMEs). The mathematical
description of the model and numerical results are given in
Section 2. A general physical interpretation of these results is
presented in Section 3. An application of this model to specific
coronal phenomena is given in Section 4, and the concluding

remarks are presented in Section 5.

2. NUMERICAL SIMULATION

In order to illustrate how shear induced non-equilibrium
occurs, we use a theoretical model in which a two-dimensional
bipolar field undergoes a steady shear velocity at the footpoints
of its magnetic loops. The shearing motion is sketched in Figure

1(a), and the initial bipolar field is shown explicitly in Figure
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1(b).

First, we perform a simulation of the dynamic response of
the bipolar field to the shear. Then we use an analytical method
to interpret the simulation results. The simulation model is
based on a two-dimensional, time-dependent, MHD model (Wu, et al.
1983, Hu and Wu, 1984) with an improved FICE (Full-Implicit-
Continuous-Eulerian) numerical scheme (Wu and Wang, 1987).
Symmetrical side boundary conditions have been repléced with non-
reflecting boundary conditions. This implies that the physical
phenomena are determined by the solution at a specific time and
are not determined by the specified boundary conditions as in the
case studied by Mikic et al. (1988). The physical conditions on
these two side boundaries are determined mathematical.y through
compatibility relations that are given in detail by Wu and Wang,
(1987). Thus, the computation domain (i.e., x| < 8.4 x 103 km,
0 sy < 8 x 10% km) consists of three free non-reflecting
boundar: s (i.e. top, and sides), while the bottom boundary (y =
0) is created with the method of projected characteristics
(Nakagawa, et al. 1987; Hu and Wu, 1984). The basic equations
for this model are the time-~dependent MHD equations with infinite
conductivity, no viscosity and symmetry in one direction (Wu et
al. 1983). Solar gravity, plasma pressure gradients, and
compressibility are explicitly considered. None of these charac-
teristics were considered in the work of Mikic et al. (1983), and

Biskamp and Welter (1989) have only considered compressibility in

a special way.




The initial conditions are (see Fig. 1b),

qy
Py = 0 BXP 1= ——— , To = T¢, Vx,Vy,Vz = 0,
v+ RT..
t
B:’.O = BO [COS(aX)] e-ayl B°{g = - BQ [Sin(aX)] e°a‘{’ B:Q = 0'
a = T/2%,, X,= 8.4 x 10% km.

(1)
The plasma parameters are taken to be p, = 1.67 X 10742 g cm~3 '
and T, = 10%°K. These parameters are representative for solar
conditions at the higher chromosphere and lower corona. The

computaticn grid points are:

x, = =8.4 x 10% + (i -~ )ax, i=1, 2, ... 22

yi = (3=L)ay. 3i=1,2, ... 11

A = 3y = 8 x 102 xm ~ 1 arc sec.

The non-reflecting boundary conditions, as noted above, are used
for the top (y = y,;), left hand side (x = ¥%,), and right hand

side (x= X,,). The conditions at the bottom boundary (y = v,)

are taken as follows:

Re)
It
]
(2]
L |
|
3
2]
w
]
w

vor Vg = 0, but Vyr Vo 7 o,

{ w.sin (ax), if |x| ¢ 5.2 x 10°% km

(6.8 x 10% - 1x])

v, = W, (sgn x) sin (5.2 x 10%a),
1.6 x 10°

if 5.2 x 103 < Ix| ¢ 6.8 x 103 km

0, if 6.8 x 2.0% < Ix| < 8 x 10° km,
(2)

The other physical quantitie: (p, T, vy, By, B,) are computed by
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means of the compatibility equations for the non-reflecting
boundary condition which assures the consistency of the numerical
computation.

In order to understand the general physical behaviour of the
noniinear solution from the mathematical model, we have performed
three numerical experiments. These three cases use combinations
of magnetic field intensity and magnitudes of the shear velocity.
The results for these three cases are described as follows:

(1) Large Plasma Beta (8, : 15.4)

In this numerical experiment, we chose the initial plasma
beta (8,) to be 15.4. This is not a physically realistic case
for a solar active region; but it does provide a basis for
comparison vith the other cases. This case corresponds to a -
local, exceedingly low, magnetic field strength of 2.12 gauss at
the crigin, x =y = 0, as shown in Fig. 1b. The shear velocity,
W., was taken to be 5 km s”!. Figure 2 shows the evolution of
the magnetic field lines due tc the shear motion at 200 s < t ¢
3200 s. It is useful to examine the evolutionary behaviour at
7arious Alfven times (defined as 7, = fiay (or :x)]/v, : 1700s).
During the early stages of evolution (that is, within the first
Alfven time), the magnetic field lines rise together in an
orderly fashion in response to the shearing motion. This
behavior is also presented in the analytical solution of Low
(1981) and the force-free numerical solutions of Klimchuk and
Sturrock (1989) although they do not consider dynamics and

gravitational effects. After the first Alfven time period, the
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evolutionary behaviour of the field lines becomes more
complicated. onlinear interactions take place between the
shear-induced mass motion, magnetic field and gravity with the
result that in some regions the field lines are bunched together
to form a current sheet (see Fig. 2g and 2h). Further
understanding of these phenomena is provided by the
representation of the shear induced mass motion as shown by the
vectorial velocity field in Figure 3. Notice that the inclusion
of magnetohydrodynamic effects, in contrast to the kinematic
study of Low (1981), causes upward mass motion in addition to the
up-lifting of the magnetic field lines because the plasma has to
move with the field lines under the conditions of infinite
conauctivity as manifested by the upward component of Lorentz
force. Note, however, that some of the uplifted plasma (in the
region displaced from the origin) slows down under the actiﬁn of
gravity, reverses direction, and falls back to the surface. Most
of the motion, however, is upward. These upward mass motions are
also found by Mikic et al (1988) and Biskamp and Welter (1989).
However, these workers did not include compressibility, pressure
gradient, and gravitation as noted above. The present study,
which does so explicitly, demonstrates a different evolution in
the later stages.

This induced upward motion can be explained via our
governing equations. When we introduce the shear motion (vy), an
axial field component, B,, will be induced through the induction

equation. The additional magnetic field will cause an additional
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magnetic pressure gradient in the momentum equation. This
additional pressure gradient induces both the horizontal (v,) and
upward (vy) moticns as shown in Figure 3. Subsequently, the mass
motion interacts with both the magnetic field and gravity.

Closer to the surface, the combined effect is dominated by
gravity, and the result is the cluster of magnetic field lines in
which a current sheet is formed as shown in Figures 2(g) and 2(h)
at nearly twice the Alfven time.

Figure 4 shows the plasma properties (i.e. density,
temperature and pressure enhancement in terms of percentage
change from the initial values at each level) at the end of this
simulation (t = 3600 s; more than 2 r;). These properties are
shown at various heights (y,, Y;, Y4, Yg, and Yior &C chown in
Figure 1b) as a function of horizontal distance. These results
also help to explain the magnetic field line distribution. That
is, the high density magnetic field region shown in Figures 2(g)
and 2(h) within the mid-horizontal range (at the altitudes:
Y,,Ys) corresponds to the increase of plasma density by 20% (i.e.
p/p, ~ 0.2), temperature decrease of 20% (i.e. .T/T, ~ =0.2),
and magnetic field strength (aB/B,) increase by a factor of 3.
These properties are similar to those for a current sheet. With
these properties in mind, let us now turn our attention to the
plasma flow patterns as shown in Figure 3. The plasma flow rises
initially above the zone of maximum shear velocity. At later

times (say, from 1000 to 2000 s), the plasma flow moves toward

the central region in a pattern reminiscent of a mushroom cloud.
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In the later stages as shown in Figures 3g and 3h, the
significant plasma motion is again concentrated in the
neighborhood of the sheared region. This is also the region
where the magnetic field lines have been clustered as seen in
Figures 2g and 2h.

(ii) Intermediate plasma beta (i.e. B, = 1.54)

In this case, our simulation is performed with an initially
modest magnetic field strength (B, = 21.3 G) and with a shear
velocity (w.) of 15 km s~!. The qualitative behaviour of the
evolution of the vectorial fields (i.e., magnetic and velocity
fields) and plasma parameters (i.e., density, temperature, and
pressure) are similar to the Case (i). Therefore, we shall not
repeat a full presentation. Nevertueless, there are scme
interesting features that appear in the evolutionary results of
the magnetic and velocity fields as shown in Figure 5.

The most pronounced result is the induced velocity
distribuﬂion shown on the right side panels of Figure 5. The
high velocity of the ascending movement in the central region is
especially notable. As a result, the closed bipolar field tends
to be opened up. We attribute this to the force created by the
ascending movement of mass motion initiated by the shear
prescribed at the lower boundary. The highest velocity attained
by the mushroom cloud-like ascending mass motion is about 25 km
s"! at t = 700 s (i.e., ~4 Alfven times) after introduction of
the shear motion. The corresponding plasma parameters can be

summarized as follows: the density decreases by about 50% at the
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legs of the intermediate loops marked by the footpoints x,, Xg,
and x, as labeled in Figure 1b. Again, the pinch effects
discussed for Case (i) occur and a current sheet is formed where
the density increases by 25%; the temperature decreases by 30%;
and the field strength increases by a factor of 2.

(iii) Low plasma beta (i.e. B, = 0.06)

In this case the initial magnetic field strength is
increased to a more realistic value of 106.3 G without changing
the other plasma parameters. The initial plasma beta is equal to
0.06 which is twenty-five times smaller than Case (ii) and two
nundred fifty times smaller than Case (i). Again, the evolution
of the magnetic field and velocity field exhibits patterns
similar +o those of Cases (i) and (ii). Figure 6 shows the
evolution of the magnetic field and the velocity vector field for
this case. The maximum upward velocity is a factor of 4 higher
than for Case.(ii) and a factor of 40 higher than for Case (i).
We note that the time required to reach the maximum velocity is
much shorter than in the other two cases.

In order to examine this phenomenon further, we plotted in

Figure 7 the planar maximum absolute velocity (i.e.

(vz -vi);:i) in the neighborhood of the apex of the arcade as a
function of time for the three different cases. We chose to
plot this parameter instead of the upward velocity, Vs because
the representative parameter [v; + v;]”2 is related to our
analytical analysis that is discussed later (and in the

Appendix) . Actually, the numerical results show that the

125




horizontal velocity, v,, is only 25% of the vertical velocity,
Ve First, we point out the change of scales that was required
for the three Cases (i), (ii), and (iii). Second, we direct
attention to the common features: an approximately linear initial
phase followed by a smooth transition to an explosive upward mass
motion. The latter phenomenon is representative of the upward
regions as discussed earlier.

It is interesting to relate these results to the magnetic
field evolution. For example, we direct attention to Figures 2,
5 and 6 where, in the early stages of the evolution, the change
of field lines is regular with a slowly ascending movement. This
upward motion is also present in the force-free analyses of Low
(1981) and Klimchuk and Strurreck (122¢2), and the numerical
incompressible simulations of Mikic et al. (1988), and Biskamp
and Welter (1989). However, the change of field lines in the
present case becomes quite irreqular in the later stages of the
evolution. From Figures 2, 5, and 6, we notice that the lower
field lines are pinched together and the upper field lines tend
to open up when the maximum planar velocity exceeds the Alfven
speed. The Alfven speed for these three cases is 4.67 km s~ !,
46.7 km s~ ! and 232 km s~! respectively. The maximum footpoint
shear motion, v., is slow compared to the Alfven velocit’ in the
latter two cases but fast compared with resistive diffusion in
all three cases. Thus a sequence of essentially quasi-static,
force-free states with frozen-in magnetic fields is found in the

early stages, which ends when the magnitude of planar maximum
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velocity exceeds the Alfven speed, and the system becomes
unstable. We claim that this is a shear-induced instability that
could not be found in the earlier numerical simulations that
omitted compressibility, pressure gradient, gravity, and the
different treatment of boundary conditions. We shall return to
this point later for further discussion utilizing analytical
results.
3. FURTHER INTERPRETATION OF THE SIMULATION RESULTS

From these simulation results, we have found that the
buoyancy force leads to a mushroom cloud-like ascending movement
that pushes the closed magnetic field upward. In order to
understand this result further, we supplement our numerical
simulation with an arproximate analytical solution:

Creation of Mushroom Cloud-~like Ascending Motion

From the numerical simulation of all three cases, we observe
that the shear-induced mushroom cloud-like ascending movement can
be ascribed to the out-of-plane component of the magnetic field,
B.. This component gives an upward magnetic pressure gradient
(i.e. T(Bf /8w)) which causes the ascending movement of mag-
netic field and corresponding plasma flows. On the other hand,
we notice that no B, component is generated near the origin (x =
0, y = 0) aue to shear. This leads to a downward force, such
that we observe the field lines being squeezed together to form a
current sheet as shown in Figures 2, 5, and 6. This point can be
illustrated further by using a linear' approximation. The

justification for the use of linear theory is seen from the
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numerical results that show that the initial stage of the shear-
induced motion behaves regularly as shown in Figures 2,3,5 and 6.
A closed form linearized solution for the induced field

component B, is the following (for the derivation, see the

Appendix) :

B
o= c,e”?Y¥ cos (ax) cos (Lax(e”?Y) cos (ax)]
~4mp (3)
’ sin [ (t+t,)Lu,]

This result expresses that the induced magnetic field B, rises
from the lower boundary (i.e., y = 0) and spreads upward with a
characteristic time scale Lu,, where L is defined by Eg. (A.8).
It could be noticed from Egq. (3) that B, decreases exponentially
with respect to the increase of v (height), because the term, cos
(Lax (e~?Y) (cos (ax))~!] in the central region, varies slowly
with height.
Finally, the coefficient c, corresponds to the shear

velocity (w.). The part of the total upward Lorentz force
a BH

(=3B, = - — =°") chat causes upward acceleration is indepen-
dent of tneagiéi of the coefficient c, (or w.).

Shear-induced Instability

From the simulation results shown in Figure 7, we found
earlier that instability sets in when the absolute maximum planar
velocity exceeds the Alfven speed. 1In order to substantiate this
claim, we performed a linearized analysis in which an approximate

linearized solution for the planar velocities (u, v) was

constructed as shown in the Appendix (Eq. (A.13). These
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velocities are as follows:

u, = 5' e"?2¥ sin (2 ax) \

! (4)
v, = 5' e"22Y (1 + cos 2 (ax)]. j
The electric current along the z-axis can be estimated to the

first order, as:
4w dB

t
—J. = — - — =16 a? B, e"32Y cos ax I §v dt, (5)
1]

which means that the Lorentz force 1l/c¢ (J,By - J,B,) leads to
ascending flow, because it has been shown in the Appendix that &
1s always positive =nd has an exponential growth rate as shown in
Eq. (A.16). We have identified this phenomenon as the shear-
induced instability since the numerical simulatinn results shown

in Figure 7 are consistent with the analytical analysis. It is

further noted from numerical results that the term - 1/c J,B, is

always upward.

The results for the evolution of the magnetic field
configuration shown in Figures 2, 5 and 6 show clearly the two-
stage evolution that we discussed earlier. The first stage of
the evolution can be described by the linearized solution given
in Eq. (4). The second stage of the evolution involves the
pinching together of field lines in the region where the shear
motion was applied. If the three factors noted earlier
(compressibility, pressure gradients, and gravity) had been
absent, we believe that our results would have been similar to

those of Mikic et al. (1988). Our current sheet, however,
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Bl annd

developed horizontally, whereas, their current sheet was
vertical. We explain this phenomenon by examining the
distribution of upward component of the Lorentz force (i.e. 1l/c
(J,By = JB;)). To illustrate this viewpoint, we use the results
for B, = 0.06 because this case best resembles the real physical
conditions in active regions. The results are plotted in Figure
8. The left-most panels show the horizontal distribution of the
vertical component of the Lorentz force at different heights from
Y, to Y,y [as shown in Figure 1b] at 25 s after the introduction
of the shear motion at the lower boundary. As noted earlier, the
Alfven time for this case is ~ 35 s. This result clearly
indicates the first stage of the evolution due to the
intrednction of shear. All the forces are in the upward
direction which means that all field lines are lifted up in an
orderly fashion. The magnitude of these forces is of the order
of 3 x 10°% dyne/cm?. The middle panels show the resultant
upward component of the Lorentz force at t = 100 s which is about
three Alfven periods. These results are reflected in the
nonlinear nature of the evolution in which the Lorentz forces
have both upward and downward direction at the intermediate
altitudes.

This bi-directional nature of the Lorentz forces causes the
field lines to be pinched together in the lower regions as shown,
for example, in Figure 6 for B, = 0.06. This particular feature
is most pronounced in the results shown in the right-most panels

which show the vertical component of Lorentz force at t = 213 s;
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this is about seven Alfven periods after the introduction of the
shear. We note that the vertical component of this Lorentz force
decreases at high levels, but, in lower levels (i.e. Y, and Y,),
two very strong oppositely-directed vertical components of
Lorentz force (~3 x 1077 dyn/cm?) appear. The force at Y, is
upward and the force at Y, is downward. These two forces cause
the field lines to be pinched together as shown in Figure 6c.
Further discussion of this point will be included in the next
section as part of a general scenario for shearing motions of

magnetic arches or bipolar regions.

+. SCENARIO

From these cimulation results, supported by the linearized
analytical solution, a physical scenario is proposed for the
formation of an "Arch Filament System (AFS)" and its eruption as
part of a more general scenario for "Coronal Mass Ejections
(CMEs)". A schematic representation of this scenario is
presented in Figure 9. After introduction of shear moticn at a
bi-polar regicn, zll of the field lines will first be lifted up
in an orderly fashion due to the shear-induced upward Lorentz
force before the absolute maximum upward velocity reaches the
local Alfven speed: this is the linear stage of the evolution.
When this upward velocity is in the neighborhood of the local
Alfven speed, the lower parts of the magnetic field lines are
pinched together, and an arch filament system is formed. At the
same time, the upper part of the magnetic field lines is pushed

upward, and a certain amount of mass is carried upward. This
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upward mass motion is shown in Figure 10 in terms of contours of
1p and ip that move upward at all but the lowest gravitationally-
bound heiahts.

Finally, when this absolute upward velocity exceeds the
Alfven speed, the shear-induced instability sets in as shown by
the numerical results of Figure 7 and the analytical solution in
the Appendix (Eg. (A.16)). In the following we compare this
scenario with the available observations.

Arch filament systems and coronal mass ejections have been
investigated by many authors (Bruzek, 1967, 1968, 1969: Bumba and
Howard, 1965; Martres et al. 1966; Harrison 1986). These authors
have noted that arch filament systems (AFS) always connect areas
of opposite polarities and cress the neutral line in the
longitudinal magnetic field. Bruzek (1969) has pointed out that
the occurrence of AFS is associated with evolution of young
bipolar spot groups. As for the motion of AFS, its
characteristic feature is its expansion in height with an
ascending velocity of 16 - 25 km s~ ! with footpoints rooted in
the two opposite spot regions. This behaviour is quite similar
to the early stage of the simulated magnetic field lire evolution
and mass motion shown in Figures 2, 3, 5 and 6 where the apex of
the magnetic loops is rising but their legs have little lateral
movement. It was further noted that the AFS has both descending
and ascending motions in loops. Bruzek (1968) attributed this
phenomenon to the mass injection at one leg and its return to the

chromosphere via another leg that has opposite polarity. On the
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other hand, shearing motion, if it has a line-of-sight companént,
would always lead to a blue shift in one leg and red shift in the
other. Therefore observations of flows in filaments are not
evidence of shearing. However, such evidence is not needed since
the relative motion of bipolar spots is both necessary and
sufficient evidence of shearing. Nevertheless, this concept of
descending and ascending motion is based on Doppler shift
measurements which can easily, at least partially, be recognized
as complementary evidence of horizontal shear motion that occurs
on both sides of the neutral line. This statement considers the
fact that the spot group area is often not strictly perpendicular
to the line-of-sight of the observer; thus the Doppler shift
velocity must have an appreciable horizontal component (Harvey

and Harvey, 1976).

On the basis of our numerical simulations, the analytical
solution and_ébserved characteristics, a physical model for the
formation of AFS and subsequent CME can be constructed as
follows. First, a young bipolar sunspot group emerges from the
sub=-photosphere. As it rises, its area increases and the neutral
line dividing the opposite polarities gets longer and longer.
Then a portion of the field can be reasonably regarded as a two-
dimensional bipolar field (as is used in our mathematical model).
In the meantime, the opposite polarity areas rotate with respect
to each other. Associated with this rotation are horizontal

shear motions that appear on both sides of the neutral line

(thereby justifying our construction of the shearing
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velocity used herein). The Lorentz force generated by this
process (see, for example Figure 8) pushes the magnetic loops
upward during an initial stage. At the later times, the magnetic
“ield becomes distorted, nonlinear MHD effects force field lines
to pile-up and, then, the pinch phenomenon ensues. Such pinched
magnetic flux tubes could be identified as arch filaments which
are visible as a set of dark loops. The simulation has shown
that in this region the plasma has high density and low
temperature. From the analytical solution, we notice that the
growth time (V;\a)‘1 of the shearing instability is aﬁout 30 min
which is a typical average life time of AFS. Thus, this

simulation model may be appropriate to describe the formation of

AFS and the eruption which leads to some CMEs.

5. CONCLUDING REMARKS

We have used a time-dependent, nonplanar MHD model for a
bipolar magnetic region that was subjected to shearing motion at
its foot points: The characteristic plasma beta was varied over
a wide range - from 15.4 to a more realistic value orf 0.06.
Common features were identified for all cases with the
differences primarily occurring in the timing of the events vis-
a-vis the characteristic Alfven times. An essentially linear,
early phase of upward mass motion was followed until the Alfven
speed was reached, and a shear-induced instability is initiated.
This nonlinear instability may be the basic mechanism for arch
filament formation and subsequent coronal mass ejections.

In our opinion, the early evolution in our simulation is in
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accord with gquasi-static evolution of magnetic arcades
demonstrated by Klimchuk and Sturrock (1989). In their work, a
very low beta plasma was assumed, and therefore the magnetic
field is unaffected by pressure and gravitational forces. oOur
simulations are also in accord with the dynamic evolution of
magnetic arcades demonstrated by the numerical simulations of
Mikic et al. (1988) and Biskamp and Welter (1989) in both the
early and intermediate stages of this evolution despite their
neglect of compressibility, pressure gradient, and gravity. We
did not find the reconnection and formation of an ejected
plasmoid, as Mikic et al (1988) did, since we assumed electrical
resistivity and viscosity to be zero. During the late stages of
the evolutionary development, when the plasma velocities
surpassed the Alfven speed, our numerical simulations demonstrate
nonlinear instability and catastrophic upward motion at high
altitudes.

As a final remark, it can be shown that these numerical
results are valid over a wide range of parameters according to
the scaling rule for dynamic similitude. For example, the
present numerical results, computed on the basis of T, = 10° K

and p, = 1.67 x 10°!2 g cm™3, can be scaled to initial conditions

of T, = 10° K and p;, = 1.67 x 10"!'? g cm”? by introducing a set
of scaling parameters; t, = N1y oy Ly = 2Ly, v, = N1y Veor Ty =)
T,, py = V' pg, P, = P, and B, =B, which leave the governing

equations invariant for a given plasma beta. In a recent study

of similitude theory, Wu et al. (1988) have shown that the
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present results also apply to the physical condition respresented
by these different initial conditions.

As another example of the use of dynamic similitude, we may
pose the following question: if the footpoints are moved slowly
enough that the evolution is quasi-static, would the magnetic
field closely approximate the static equilibrium states?
Although, we suggested above (as did Mikic et al., 1988, and
Biskamp and Welter, 1989) that the answer is ’‘yes’, the reader is
reminded of the values of the shearing velocity v, used in the
present studies (e.g., 15 km sec”!, maximum, for B, = 0.06) and
in the above mentioned work (30 km sec”!, assumed by Mikic et al.
1988 for B ~ 0.03). Although these maximum footpoint shearing
velocities are much less than the Alfven speed, they are a factor
of about 10 larger than observed_photospheric velocities.

In summary, we consider the results given here to be
representative of a realistic dynamical evolution of the posed
physical problem of sheared magnetic arches and their evolution
into arch filament eruption and coronal mass ejections.

Finally, we remark on the relevance of our results to the
observations of some CMEs as reported by Harrison (1986). The
major point of his work is that a small x-ray burst is often
found at the very onset of a CME, often followed by a large x-ray
flare later on during the CME. 1In the present work, the
formation of the current sheet coincides with the rapid increase
in the velocity of the upper portion of the field lines. One

could interpret the latter, as already discussed, as the onset of
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CME, while the current sheet formation could lead to a burst of
energy dissipation (not shown here) which would be visible as a
small x-ray burst. The simultaneity of these two events is
consistent with the observations of Harrison (1986). This could
be another indication that these numerical results indeed

represent a basic mechanism for the initiation of CMEs.
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APPENDIX
To obtain an asymptotic solution for the relationship
between the fcotpoint shearing velocity, w, and B, in the first

stage (linear stage) of evolution during which p, p, T, By, By

vary slightly, we write:

P = pyg * Prsr P=Dg TPy, T=T; + Ty, By =By, + Byyo

(A.1)

By = Byoy * Byysy By = Bayy Vg T Ve, Vy = Ve, V=V,

where subscript ¢ and 1 indicate the zero-order and first-order
BO

quantities. And, Vv.,j, AOTRE [vy,| << = Alfven speed,

. | T,
B., << B,. 1Inserting (A.l) into Egs. (2.4) and (2.7) formerly
given by Wu et al. (1983) and leaving out the higher-order quan-

tities, we obtain the linearized equations

Vay Byxo 3(B;y/Ndmp,) Byo 9(Bzy47p,)
= . +
at NdTp, ax Ndwp, ay
b By, By
- = ¢ 4 (A.Z)
2 amp, Ndmo,
_— e
(B, ~47eg) Beo 9V, Byo A
at ~4%p, ax ~4mp, dY
where oy, = p. * e®Y, b = g/RT.. To solve Eq. (A.2), we con-

struct the auxiliary equations:

* * —— * e—
v, 2 3(B,/~4Tp,) i, 83(By/NaTp,)
—— = By (4Tp,) ' + Byo(4mp,) /
at ax ay

* —— * *

3(B./-4Tp,) /2 v, v,
= By {4%p,) _ BY°(4ﬂpo)-l/2 _ (A.3)

at ax ay
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x B, o By |
v, F | 1Vy ~ :
~4Tp,/ \ N4Tpg/
Substituting: F' = , F7 = '
2 2
Eg. {(A.3) reduces to
3F" ( F* 9F ")
= B, (4mp.) /% « e '2°B/2IY lcog ax + —— - sin ax + —j,
ot i 9% ayJ
3F~ : ar~ aF-]
— =B, (4mp,) " t/? .+ e l2-B/2)¥ l_ cog ax + —— + sin ax + —|.
at \ 9% ay)

(A.4)
Since solving Eg. {A.4) is equivalent to solving its correspond-
:ng ordinary differential equation (Courant and Hilbert, 1962) it

is easy to write down the sclutions as follows:

-1
F* = ¢ (e”?Y cos ax, tw, + f(ax) + (e ?Y cos ax)~t*bl22: 7y,

-1 (A.S)
F~ =y (e”Y cos ax, tw, - £(ax) + (e”*Y cos ax)-l*bl2a) ),
where

w, = aBy(4mp.) 12, £(x)

X
f (cos x‘)~h/23a . gx»
[s]

Zonsidering the boundary value of v. (the nature of shearing) and

ising Eq. (A,5) we can find the following solutions

B
v. = c,e”® + cos ax + cos(L{) * sin (La),
R (A.6)
B'.!
. = c, e’ . cos ax * sin (L{) * cos (L»),

ﬁ4ﬂp0/
where

- N - -ay -tsbizay !
{ 2 (t + T,y)uw,, o = f(ax) + (e COos ax)

t,, L and ¢, are integration constants. Back to solving Eg. (A.2)
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B‘.!
suppose V.,,

~ satisfies the eguality (A.6) except that L,
‘4T,
c, are now not constants but functions of x,y. Thus

vy, = c,(x,y) + e ¥ .cos(ax) : cos (L(x,y)'§) * sin (L(x,y) °* =),

— ; = ¢, (x,y) * e * cos(ax) * sin (L(x,Y) * )

+ cos (L(x,y¥y) * n) (A.7)
Inserting (A.7) into (A.2), c, and L can be determined uniquely
by solving two ordinary differential equations. First, L satis-
fies the equation:
oL aL

cos ax *+ — - sin ax *+ — = Q (x,y,L)
at ay

]

Q (x,y¥,L) - (b/4) sin (ax) + sin (2L?) sin (2La) - (A.8)

[T sin (2La) - » sin (2L{)"! ,
with boundary condition LIY=o = L({x). After L has been found,
(In c,) can be obtained in the same manner using the following
equation
3(lnc,) d(lnc,)

cos(ax)———— - sin(ax)+ ——— = [? + tg (Lf) - =+ ctg (Ln)]
Ix 3y

©Q (x,y,L). (A.9)
In fact, we only apply (A.7) to explain the physical nature in
the lower shearing region where o, = 0.8 p., therefore L and c,
can roughly be regarded as constants.
It is difficult to find an asymptotic solution for v, and
vy. Let us consider Case (iii) of strong magnetic field 1in
which the inertial force and -7p and pg can safely be ignored.

Inserting (A.l) into (2.2) and (2.3) of Wu et al (1983), the
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linearized equations are given as follows:

~ 9V, 1 "3By, 3By, 1 3B.,
99 = — By, . - ©oT — Bgy '
ot 4w . ay ax ! 4T ax
(A.10)
A 1 {0By, aBYii 1 3aB,,
3, —— = = — By, - v = — By, ——
ot 4% v ay ax | 4 ay
1 3B, 1 3B, ,
where the terms - — B,, , = — B,, —— that are second-
4w Ix 47 oy

order quantities must be Kept in view of actual mathematical

manipulation. From (A.7) the partial Lorentz Force can be

written as

- 9B, 2
- (4Wo,) Tt v Buy = (cy a/2) + () + ay) + e i
aX
.+ sin(2ax) -+ sin? (L{),
, 9B, 2
- (47p,) "t + By, * —— = (cy a/2) ¢+ 7'+ e ¥ [1 + cos(2 ax)]
ay
+ sin? (L{),

(A.11)

where »' and », are slow-varying functions of x,y. The
representations for o', n, are very complicated in the case with
gravity but as we only deal with the lower central part of the

iomain where » = const. ~ = ax *+ e %Y . (cos ax)'l, B., = B:*.

4
-

Therefore n»' and -, asymptotically approach the case with no

gravity. In such case »' and n»; take simple forms as:

2V = (cosH)2 - 0 ¢+ cos T ¢ sin @,
2, = Le?Y + cos T : sin I + (sin ax)7!, (A.12)
T = LedY . ax - (cos ax)”!.

Figure 11 shows the behaviour of »' and »,. Note that if Le?Y is

-

less than 0.5, then 0 < 3, << ' =z 1. Therefore we will pay no
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attention to the difference between »‘' and »' + a2, within the
range -ax| < %/4. (A.ll) reminds us of analogy between shearing
veloc}ty and force, so we suppose velocity having a mushroom-like
form as:

v

1 §' e~ %Y gin ax,

(A.13)
Vg = 8 e~ 22Y (1 + cos (2 ax)],
where §’ is a function of t, x, y (but weakly depends on x,y) be-
ing determined later. Inserting (A.13) into the linearized
equations of (2.5) and (2.6), of Wu et al. (1983) the time varia-
tion of current J.,/c can be found as

& 8B,, 8By,

- . = 16 a‘B, 3 e 32Y . cos (ax). (A.14)
at ' 9x 3y |

In deriving Eg. (A.14) the weak dependence of ¢' on x,y has been
used. Differentiating (A.10) with respect to t and inserting
(A.14) and (A.1ll1l) into it and then letting it go to limitation
when y goes to zero, we obtain one equation
52
" 3V L=e = B vy At BV o, - (cf a/2) 2y,
Lu, sin [2Lu, (t + tg )]
(A.15)
to determine §' uniquely (here vi = B§/4n;°). Noticing &', !
only weakly depend on x,y, Eq. (A.l15) can be regarded as an ordi-

nary differential equation and, therefore, can be easily

integrated with respect to t. Giving the initial condition:
das®

5‘!Y=0 =0, —i = 0 when t = 0, we obtain an asymptotic sol-
dat |

ution as:
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5% 'yao = [(a+B)/2] + exp (48 Vv, at) + [(a=B)/2] exp (-8 v; at)

¢in [2Lu,(t + t,)]

- (A.16)
sin [2Lw,t;]

with
2 2
L“O acl'f)\:vzo Ln‘Ci/VA
a = - sin (ZLucto) ~ —— > 0
8(L%? + 2v§a2) 842 (L%+2)
o}
2 2 2 2\ 2
L Uoclﬂ‘!v=o L n Cl/VR
B = — - cos (2Lw,t,) ~ ————— > 0
842 v; + (L¥? - 2via?) 16 (L2+2)

Senerally, we can find an approximate solution for the average

?', the representation of which is the same as (A.16) except for

the substitutions 35‘!,. "M lyzor v: by &%,

<3

Py
LY=o 'y vy where

Y Y v
-~ — | Za‘d / = - .P v dy/ -\-’-2 - VZ , 2 e-zay dy/
5 J Y/¥2 0 J " Y/Y2: Vy A Y/Y3-

0 0 ']
From (A.16) it can be seen that 5' will grow exponentially, and
that the shearing velocity c, acts like a "seed". 1If there is no
"seed", the mushroom flow velocities (v,, v,) will never arise.
The growth rate is independent of c. but depends on the Alfven
speed v; = B,/-4%p,. Therefore shear motion can induce linear
MHD-instability. However this instability soon attains satura-
tion, and the flow becomes quasi-steady and increases gradually

until the velocities (v, vy) exceed Vv,.

144



Figure 1.

Figure 2.

Figure 3.

(a) Sketch of a two-dimensional bipolar magnetic field
that is subjected to a footpoint shearing motion as
indicated by the arrows.

(b) Explicit bipolar magnetic topology prior to the
shearing motion (see Equation (1)). The photospheric
boundary extends to ix| = 8.4 x 103 km in both
directions from the origin. The vertical extent into
the corona is to y = 8 x 10° km. The positions y =
Yy, Y2, -+ ¥,q indicate the vertical levels at which
horizontal surveys will be shown of various physical

quantities during the shearing motion at the

footpoints.

Magnetic field line evolution as a function of time
during induced footpoint shearing motion for Case (i):
3, = 15.4 and the Alfven time, 7, = 1700 s. The

horizontal axis represents the distance from

Xyeeoono X4, as shown in Figure 1l(b).

2 2 ,
Vectorial velocity field, (v, + vy)l/z, as a function

of time during induced footpoint shearing motion for

Case (i): B, = 15.4; 7, = 1700 s.

145



Figure 4.

Figure S.

Figure 6.

Figure 7.

.

Changes (relative to the initial local values) of

density, temperature, and pressure at the end of the
simulation (Case (i): B, = 15.4), t = 3600 s which is
more than two Alfven time periods. The distributions
are plotted along the entire horizontal scale of the
domain and at various levels: Y, Yi: Y4 Yg, and Y,gq
as shown in Figure 1b. All the values are normalized

by a reference quantity as indicated.

Evolution of magnetic field lines and vectorial
velocity fields at various times for Case (ii): B, =
1.54. The characteristic Alfven time for this case is

Ty, = 174 s.

Evolution of magnetic field lines and vectorial
velocity fields at various times for Case (iii): B, =

0

0.06. The characteristic Alfven time for this case is

Ty = 35 s.

Maximum vectorial velocity that is representative of
the upward vertical mass motion for Cases (i), (ii),
and (iii). ©Note the change of scales. The
respresentative Alfven times for the three cases (B, =

15.4, 1.54, and 0.06, respectively) are 7, = 1700 s,

174 s, and 35 s.
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Figurs 8.

Figure 9.

11.

The total y-component of the Lorentz force per unit
area at t = 25 s, 100 s, and 213 s and at various
levels in the solar atmosphere (Y = Y, Y., ... etc.).
The representative Alfven time for case (iii) is 35 s.
At £t = 100 s (about 27,) during the nonlinear stage of
evolution, the Lorentz forces at the intermediate
heights have a combination of upward and downward
directions that causes magnetic field line pinching
(see text). This pinch effect is more pronounced at t
= 213 s (about 7r,) at lower altitudes. The
horizcntal axls represents the distance x.

...... Xs9

as shown in Figure 1(b) also shown for Figures 2 - 6.
Scenario for the formation of an arch filament system
(AFS) and upper level movement outward in the initial

stage of a coronal mass ejection (CME) as a result of

shear-induced instability.

Conteours of pressure and density changes, _.p/p, and

2p/p,, fOr case (ii) (B, = 1.34] at several times.

Behaviour of -' and ~.. See Appendix (Equation A.12).
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MODEL CALCULATIONS OF RISING MOTIONS OF PROMINENCE LOOPS

Tyan Yeh
Space Environment Laboratory. NOAA Environmental Research Laboratories
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Center for Space Plasma and Aeronomic Research. The University of Alabama in Huntsville
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Abstract. Model calculations are presented for the rising motion of the top section of a
prominence loop, which is represented by a straight flux rope immersed in a coronal medium
permeated with a bipolar magnetic field. Initially the prominence is at rest, in equilibrium
with the surrounding coronal medium. When the magnetic monopoles that account for the
source current for the bipolar tield strengthen. the upward hydromagnetic buoyancy force
overcomes the downward gravitational force so that the prominence is initiated into upward
motion. The illustrative examples show that prominences can move away from the solar sur-

tace by the action of hydromagnetic buovancy force if the disturbances are large.

SOLAR PHYSICS
Submitted June 1990

160




1. Introduction

A new dynamical model ot prominence loops was recently constructed on the basis of the
theory of hydromagnetic buoyancy force for flux ropes (Yeh. 1989). A prominence loop im-
mersed in the solar atmosphere is regarded as an extraneous body, in the sense that it is mag-
netically separated from its surrounding medium. Thus. its magnertic field. mass density. tem-
perature. and motion are quite different from those of the surrounding medium. The impor-
tant feature is the polarization current induced on the periphery of the prominence that
makes the ambient magnetic tield tangential. The exertion of the ambient hydromagnetic
pressure gives rise to the hydromagnetic buoyancy force. Its predominant constituent is the
diamagnetic force which amounts to the force exerted on the currents in the prominence by
the external currents that sustain the coronal magneuc field. Fora prominence to be station-
ary in equilibrium with its surrounding medium. the hydromagnetic buoyancy torce counter-
balances the gravitational force exerted by the massive Sun. When the coronal magnetic field
evolves. (e changed diamagnetic force no longer matches the gravitational force. Once the
forces become umbalanced. the prominence is initiated into motion. The evolving motion
may be either upwar.d or downward, depending on whether the hydromagnetic buoyancy
force is greater or less than the gravitational force. That the evolving motion of prominence
filaments is driven by the instability evolution of the global magnetic field has recently in-
terred from observations (Kahler et al.. 1988).

In this paper we apply the dynamical theory to study the motion of the top section of a
prominence loop arched above the solar surface. The calculation presented is mathematical-
ly one~dimensional in space (viz.. the heliocentric distance) although it involves two dimen-
sional geometry (see Figure 1). The governing equations for the dynamical evolution are
MHD cquations of motion supplemented with equations of mass conservation. tlux conserva-
tion. and energy consetvation. Since we are mainly interested in the dynamics of promi-
nences. energetics is dealt with only to the extent necessary to provide a closed system of
equations tor the dynamics. Accordingly, in our present calculations we neglect all entropy-
generating processes that are perunent to the thermodynamics of prominences.

Several illustrative examples of dynamical evolution of a prominence loop are shown.

First. we construct an equilibrium configuration fora prominence loop immersed in a coronal
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medium that has a bipolar magnetic field permeated into a magnetohydrostatic atmosphere.
For a prominence op to be stationary, it must have neither translational motion as a whole
nor expansional motion relative to its axis. The former requires that the downward pull of the
gravitational force exerted by the Sun is counterbalanced by the upward lift of the hydromag-
netic buoyancy force exerted by the surrounding coronal medium. The latter requires that the
outward push of the pressure gradient due to the difference in internal and external gas pres-
sures is counterbalanced by the inward pinch of the Lorentz force density due to the internal
currents. Next, we calculate the motion of the prominence loop when the equilibrium is dis-
turbed by the temporal change of the bipolar field. The change can be caused by strengthen-
ing and/or displacement of the magnetic monopoles for the bipolar field. These examples
Jemonstrate that the prominence can move away from the solar surtace when the distur-
bances are sutficiently large.

The model calculations illustrate the mechanism involving hydromagnetic buoyancy
force thatislikely important in the eruption uf prowinences. Such calculationsin cenjunction
with analytical study also serve to narrow down the ranges of the parameters as an aid to
MHD numerical simulations of the eruptive motion of prominences. Very often the difficul-
tres with numerical simulations lie in the large number and extensive range of the pertinent

parameters that characterize the phenomenon under study (Wu. 1988).

2. Assumptions

The geometry of the prominence loop may be described by its axis and its cross-section.
We assume that the varying cross-section is well accounted for by a circular cross-section
whose radius changes in time. In this treatment of the top section of a prominence loop, a
prominence Is represented by a tlux rope with a straight axis, whose heliocentric distance may
change. The corona is represented by a magnetized medium that has a transverse magnetic
treld. perpenurcular to the ais of the prominence. which s bipolar and a longitudinal mag-
netic tield. parallel to the axis. which varies with the heliocentric distance only. The current
that produces the bipolar tield is on the solar surface. to be accounted for by a couple of mag-
netic monopoies on the photosphere. These monopoles are chosen to be line monopoles to

make the rioblem two-dimensional. The current that produces the longitudinal magnetic
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field is in the corona. The coronal current is in magnetohydrostatic equilibrium with a strati-
fied gas pressure of the gravitated coronal gas.

The prominence loop carries helical tield lines. The helical magnetic field in the straight
prominence is represented by

a2

12
B. = 1ZB()( - —(‘5) + 1 T1loq (1)

in cylindrical coordinates (z. . ©). with the azimuthal angle ¢ measured from the radial line
pointing downward (i being the magnetic permeability in mks units). The axial component
decreases from the axial value B, at the axis q=0 to zero at the boundary q=Q. The azi-
muthal component increases from zero at the axis to the boundary value B;; = —E—uJ(,Q at the
boundary. The total anai flux is Vg = -g—TTQZB() and the total azimuthal flux is —iQZuJ“ per
unit axial length. This helical tield is produced by the current density

Jg =10 + lcu"‘%“ - gz//QQz)uz 2)
which has an axiat component that is uniform and an azimuthal component that increases
from zero at the axis to infinity at the boundary. The total axial currentis I = wQ?J, and the
total azimuthal current is 1! B, per unit axial length. The Lorentz force density

_ -1 Bt\: 1 2 q
b x By =1\ =5 - S Q)_Q (3)

acting at various mass elements ot the prominence is in the radial direction. perpendicular to
the axis of the prominence loop. tincreases from zero at the axis to p=! B',z/Q - -l—uJ(,zQ at
the boundary. i proportion to the radial distance. The axial current produces a pinching
force toward the axis whereas the azimuthal current produces an anti-pinching force away
from the axis.

The immersion of the prominence loop in the coronal medium incurs a polarization cur-
rent that keeps the helicai ticld lines separated from the external field lines of the corona. The
induced current. which is concentrated in a thin peripheral layer by virtue of the high electri-
cal conductinvity of the solar plasma. produces a magnetic field that makes the ambient field
tangential by cancelling the radial component of the coronal field on the interface and essen-

tially doubling the aztmuthal component there (Yeh. 1983). With the coronal mass density
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P, the coronal gas pressure P, . and the coronal magnetic field B, =1, > Booy T Bogy pre-ex-

isting at the site of the prominence. the amoient magnetic field on the outer surface of the

current layer 1s

o) = I : A {F
The boundary magnetic field on the inner surface is
At
B, (¢) =1, : (5)
3 ( ...u Q

The polarization current. given by ip =1,xp~'(B,-By) per unit circumferential length,
shields ott the coronal tield from permeating into the prominence. Across the massless layer
ot peripherai current the sum ot gas pressure and magnetic pressure is invariant. The ambient

gas pressure

p\(‘b) = P°°l q=() (6)

on the outer surface is essentially equal to the pre-existing coronal gas pressure at the periph-
ery since the gas pressure in the external region is hardly perturbed by the intrusion of the

prominence. The boundury gas pressure

1ol 2 -1 IF .
+<i0'B +2 cos’d +—E cosd 7
00}“:() -u OO q=0Q H BOO_L |q_ TfQ BOO.L q=Q ( )

on the inner surtace has a circumterental inhomogeneity which is spatially transformed from
that of the ambient hydromagneuce pressure. The gas pressure inside the prominence is well
represented by

Pﬁ(q. o) = [p”—(pcoé- %u-lB’x;X ](1 _"Z)+ (q, ¢,)+ l 1&; . ‘b)‘*‘”"&oi(q"b)

-

)
gein q )L cos Iz g
+ U Boq_' (_ 0 (NG - )-L T ( Boq_ 2 cos2d +——1TQZB°°.L qcoso . (8)
\|:|' 4= Q 4= 0 q:()
[tvaries from the anial value p,, at the anis to the boundary value p,. The gradient ot this gas
{ Y Ps g g
pressure yields the torce density

Iy 2P~ (2P, * w'R,}
“P.= v(pg s BL R )+ "‘:g?":r + 1 P (20 Q“ heol ez 0 T . (9)

ignoring msigmiticant terms. The torce term proportional to q/Q represents a radial force
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density that results from the dirference between the internal gas pressure and the circumfer-
ential average of the exte: n.l hvdromagnetic pressure. The other terms. resulting from the
circumferenual inhomogeneity of the ambient hydromagnetic pressure. represent the spatial

spreading or the hydromagnetic buoyancy force. the latter amounts to 1,p_ GM, It,” +

1, TR ' B2 R, + 1 x B, /7Q? by virtue of the magnetohydrostatic state of the coronal me-
dium (see Equauons (27) and (21)). The coefficient I has the value of 2 in the above elucida-
tion.

The prominence moves with the velocity

ug = 1.y, +1qv_‘(l)_ . (10)

which consists ot a translational velocity common to all mass elements of the prominence
loop and an expansional velocity proportional to the distance from the axis. The translational
motion is driven by the part of the force density that is uniform and the expansional motion is
driven by the part of the force density that is in various radial directions. The former part
includes the gravitational force «xerted ., the Sun and the hydromagnetic buoyancy force
exerted by the surrounding medium. The latter part includes the Lorentz force that results
from the interaction among the internal currents inside the prominence and the gradient
force that results from the difference in the internal and external gas pressures.

The dvnamical evolution ot the prominence depends on its inertia. We assume that the
mass density is uniform over the cross~secrion. ignoring the higher-order etfect ot the spatial

variation ot the mass distribution. The value of mass density p;; may change in time.

3. Governing Equations

A prominence which 1s located initially equidistant from the two magnetic monopoles
will remain so when 1ts heliocentric distance changes temporally. The prominence loop is
characterized by erght parameters: ry. Q, ug. V. P B,. Jy. and p,,.

The characterizing parameters evolve in accordance with the differenual cquatons:

d

Tj?rll =”n * (11)
do=v. (12)
dt
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d p 2
pﬁ'allo _pEGE/Ia _*_pooGl;/’o +J0&OJ_ -~ [‘&3"'.. . (13)

Iy Iy R,
o Ly o 2Pt ulB? 2R+ B +huidQ? (14)
Ede Q Q

supplemented by the temporal invariances of the total mass. the axial magnetic tlux. the azi-

muthal magnetic flux. and the total thermal energy:

TP, = M, (15)
—é—r.Qz B, = ¥ (16)
Lahy, = L (17)
*—’57()3"""[-@.,+-§(Pw+—§u“3.i,°)] =B . (18)

For a prominence to be initally in stationary equilibrium with the surrounding coronal

medium the requisite current density is

o= LEBe GM _r_“iB& (19)
Bool_ ru" Rc

in terms of the mass density (or the requisite pg in terms of the current density) and other

quantities. The requisite magnetic field is
, 5 9 - 1/2
B, = £(21p_+n2 tEHIIQ" -2up) (20)

(in enther direction) in terms of the gas pressure (or the requisite p, in terms of the magnetic
field) and other quantities. The first constraint makes the upward hydromagnetic buoyancy
force counterbalance the downward gravitational force. The second constraint makes the
outward forces due to the gas pressure and the axial magnetic field of the prominence coun-
terbalance the mward forees due to the hydromagnetic pressure of the ambient medium and
the axial current of the prominence.
4. Coronal Medium
We choose the line monopoles for the bipolar magnetic field to have the strengths £V,

and an angular separation of 204 , subtended at the center of the Sun. The two line mono-
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poles pruduce the bipolar magnetic field
By, = 1, By, (21)

in the midplane between them. Its direction. from the positive monopole to the negative

monopole. is perpendicular to the midplane. Its magnitude is

_ Wy Ro Sin By
b

22
=21 RyCosOn+Rs? (22)

By

at a heliocentric distance of r. There, the associated magnetic pressure has the gradient

5 -l 2
1y-ip * K
AT 1r_____§i°'— (23)
:n the vertcal directon. with the radius~ot-curvature
R, = L I°=2r RSO, +Ry (24)
< N r - Ro €050y

tor the circalar tield line. (By virtue of the current-freeness of the bipolar field. the gradient
force of its magnetic pressure is exactly opposite to its tensile force density.) This magnetic

pressure gradient is enhanced by a factor

2
r = —— - — (25)
(1-Q/a D) [(1-Q}/ad)" + 4(@Q/ay) sindy]
by the polarization current
=1, p0n ?.q“’(Qz»\ Gy ) coso - 4QUqy Cos o, (26)

P Q2 -2QUcos (b - by )+ q\;T[Q: - 2QUycos(d + 0 )+ 4 ) .

Here gy = (ra*=2ry Rocos 0,,+ Rs)'" is the distance from the prominence to either mono-
pole and &y =usin (Ro sin B,,/y,,) is the azimuthal angle for the monopole. The tield strength
B, increases with W, and maximizes when cos 8, is equal to 2rRe /(> + RZ). In terms of the
field strength on the solar suifice midway between the two monopoles. the monopole

strength has the value

1 = costy

W= e Rep . (27)

St 0.\1 r= RO

The monopole strength W, and the separation angle €., may undergo temporal changes.
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We choose the longitudinal magnetic field

B’x)” = 17 Booq (28)

produced by the coronal current to be horizontal. The associated current density is

lnu"-dBoql ,/dr. It provides a magnetic force in the force balance
d 1yt 3) — GM,
- dr(poo+ B ) = R 2 (29)

between the gravitational force and the gradient of hydromagnetic pressure . In addition to
the equation of force balance. two more constraints are needed in order to determine the
vertical variation of the coronal mass density, gas pressure. and longitudinal magnetic field.
We siuill assume that the gas pressure varies in proportion to the mass density and the magnet-

Ic pressure varies in proportion to the gas pressure. viz..

P, = KT_pe . (30)
21
i b=
oo = o Pen @1
oonl'=l{®

These assumptions ensure that the pressure and mass density decrease with the heliocentric
distance. T'he constant T signifies the coronal temperature (K being the gas constant for the
solar plasma). These assumpuions allow us to calculate the mass density by numerical integra-

non of the ditferenual equation

d 1 )

e T (;’3{@ = (32)
4 “ - 4 ~
1 3“ Boo" r=Ro/ p°4 r=R@ [ee]

from the soiar surface.

3. Conditions tor Upward and Outward Accelerations

For the translational moton to have an upward acceleration away from the Sun. the hy-
dromagneuc buoyancy force must overcome the gravitational force. The former will exceed

the latter 1t the bipolar tield is sufficiently large so that
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- i GM, P,
B, >

-1 2.2 l': J (33)
PR oM - RS T

On the other hand. for the expansional motion to have an outward acceleration away from the
axis. the outward force must overcome the inward force. The former will exceed the latter if

the surrounding medium has a hydromagnetic pressure sufficiently small so that
1,-ln2 < 1y 2_1,12n2
P ¥ By, < PyT M By-quifQ” (34)

Upon the use of the equilibrium values at t =0 and the conservation invariants. the condition

for an upward acceleration can be written

ol = (PfRe| _)(Q /0, )
I > I l,_‘, 1= 1=0 (35)
) () L=Pod o/ il

if we 1gnore the higher-order part of the cianiagnetic force associated with the pre-existing

t=1

gradient ot the coronal magnetic pressure. The condition fur an ouwward acceleration can be

QI ”3]

p°°+%u-ln°iﬂ< {p;!x 0+—éu-l3’qlly=;)}.%u—18£l!=U[( Q’= -
+4/3
il ol [-Gm) 1) (L) g

It tollows trom the inequality (35) that in the region where p_ is small. the translational mo-

written

tion will have an upward acceleration when the encountered bipolar magnetic ticld By, (1) is

. e . 2 - .
not less than s initial value by a factor of(r(,l /ty)". On the other hand. it follows from the

1=0

tnequality (36) that the expansional motion will have an outward acceleration in the region
L P e . . .

where PNgm=#7 Boan is less than its initial value when Q(1) is less than le, and in the region

where p - —\;L"B,,’oci;\' sufficiently less than its initial value when Q(t) is greater than Q! =0
6. Numerics
[n mks units. the magnetic permeability has the value p=47x10-7 T*m il the gravita-

: 30
tional constant tmes solar mass has the value GM, =(6.67x 107" N-m /l\u ) <(1.99% 10
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=23

hg). and the gas constant for the proton-electron plasma has the value K=(1.38x1077J/

deg)+ L1.67x 10_27kg +9.11x107" kg). To facilitate the numerics. we choose to measure
time, length. and magnetic field in the units of one hour. one helioradius. and one gauss, re-
spectively, viz. t,, =3.6x 10°s. [ s =0.96% 10° m. and B,,=10" T We further choose to
measure speed. mass density. pressure. current density, and temperature in the units of
et Tt (007 B AT et/ teet) T 1 B2 Y B o/ oo and (1 oo/t o) /K. Namely.u = 1933
km/s. py = 2.129xl()’”kg/m3(corresponding to 1.274x10% electrons/cm ), Deef =
7.958% 107 I'm* . J,; = 1.143x107 A/m*. and T, = 2.263x10° deg.

In  these normalized wunits. both the magnetic permeability. usiven by
(4% EU"'I':m:/J)/(Bw,/J wilfrer). and the gas constant. given by (1.65%x10" J/kg/
dea)/ “l T. ~¢), have the numerical value of unity whereas the gravitational constant times
solar mass has the numerical value of 5.102 helioradiue® thone®, given by

(1.333% 102 m " 78)/(r qu ).

7. Ilustrative Examples

For the magnetohydrostatic coronal atmosphere. v.e choose a mass density of
3x 107 clectrons/em .4 temperature of 2x 10% °K K (hence T, = 0.8838) and alongitudinal
magnetic ticld of 2 gauss at the solar surface. For the magnetic monopoles. to have a trans-
verse magnetic tield of 10 gauss at the solar sarface midway between the two monopoles, we
choose

Wy = 3497 gauss-helioradius . 0, = 10° .

The culculated protiles are shown in Figure 2.

. ) . .- 4 .
For o stanonary prominence loop. we choose a height of 3107 km. o radws ot

2% 107 hm. wimass density of 3 101 clcctrons/cm} .and a temperature of 5x 10 ©K 50 that:
ry, = LO7IS. Q = 0.02874. p = 39242, p,= R6.704 .

At the site where the prominence resides we have
N,=10.335. py = 614, By, = 1.676. B, = 3.054

L7(




The conditions of force balance require:

Jo = 2080.9. B, = 40.574 .
[n other words. for the prominence loop to be in stationary equilibrium with the surrounding
medium. 1t must carry a total axial current [; of 3.0x 10 amperes and carry an azimuthal
current that sustains a total axial magnetic flux W, of 3.4 x 10'? webers. These values are with-
in the ranges of typical values for quiescent prominences (Tandberg-Hanssen. 1974). It is

seen from
GM. -y 2
ot = 174287, o.M = 7361 JeBm _y67507. 2 Ba _5psy
0 0 TQ R

that the gravitational force 15 largely counterbalanced by the zeroth-order diamagnetic force
(due to the prominence current). The hydrostatic buovancy force 1s very small. accounting for
only 0.427. Even the higher-order part of the diamagnetic force (due to the inhomogeneity
of the coronal magneuc tield) is small. only 3.35% of the zeroth~order part. On the other

hand. it is seen from

Py =36.704.

[

WBE= 82314, {ni2QP=893.82. poo= 14615, 1B = 1405

that the pinching force of the axial current is largely counterbalanced by the anti-pinching
torce ot the azimuthal current and to a less extent by the internal gas pressure. The ambient
hydromagnettc pressure provides only a very small pinching. To facilitate comparnison, these
values may be translated to  (2up.)'* =3.4063 gauss. +pJyQ =29.903 gauss. and

(2ip,)' * =13.168 gauss. The plasma beta at the axis is 0.1053. The transverse projection of

the ficld lines 1n the equilibrium configuration is as shown in Figure 1. With the ratio }i]l;/‘VM
=1).9684. the bipolar field has two neutral points located at q=0.187. =4118.7°. Figure3

shows the peripheral distribution of the polarization current with ¢, =0.194 and &

A\

=(3.4°.
It flows in the direction of the prominence current in the lower periphery [$] <82.6° and
tlows 1n the oppostte direction in the upper periphery. Itis zero at the two points where the
two neutral poinis would be located in the case [ happens to be zero. Of course. the total

polarization current sums up to zero.
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Now, we consider the motion of the prominence loop when the equilibrium 1s disturbed.
We consider motions caused by temporal changes of the bipolar magnetic tield due to the

strengthening of the monopoles. Figure 4 shows the evolution caused by

d_\y_\l =2(.0 gauss-helioradius/hour for 0<t<10 hours

dt

The initial increase in the bipolar field makes the hydromagnetic buoyancy force exceed the
gravitational force, so that the prominence rises trom its equilibrium position. The promi-
nence keeps moving upward, even during 0.6 <t<3.5 when the hydromagnetic buoyancy
force 1s not large enough to cause a small deceleration. Likewise. the radius of the promi-
nence heeps increasing.  Its rate of increase is small in this case because the encountered
coronal hydromagnetic pressure decreases very slowly. To see the dependence on the

strength of disturbance. we show in Figure 5 the evolutions caused by smaller values of
/ . . . .
dw, /dt. ltis seen that the prominence may move up and down if the disturbance is small.

With a sutticiently large disturbance, the prominence will move away trom the Sun.

8. Discussion

For a prominence to be in equilibrium with the coronal medium. the six parametersr,, Q,
D« BuoJo.and py that characrerize the property of the prominence loop are related by two
constraints. hey determine wwo of the parameters in terms of the remaining tour parame-
ters. We depict these constraints by showing the requisite values of—’:—uQJ., and B, for various

values ot 1y, Q. 0, Py Pops oo Bogy - and By, inthe neighborhood of the equilibrium used in

the example (see Figures 6 and 7).

Figure 0 shows the variations of the requisite values for equilibria when the height, the
size. the mass density. or the gas pressure of the prominence has other values. Both the requi-
site current and the requisite magneuc field are larger for a prominence at a greater height if
the prominence is not focated very close to the solar surface. This is so because the bipolar
magnetic tield decreases in height faster than the solar gravity when the heightis above a cer-
tatn value. Theincreased pinching force due to a larger requisite current requires an increase

in the requsite magnetic ticld in order to have a matching outward force. Next.a larger value
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of the prominence radius increases the boundary magneuc field although the requisite promi-
nence current density remains the same. The increased pinching force is to be counterbal-
anced by an increased anti-pinching force to be provided by a larger axial magnetic field. On
the other hand. a larger value of the mass density ot the prominence requires both a larger
prominence current and a larger magnetic field. The increased gravitational foree is to be
matched by an increased diamagnetic force for counterbalancing, The consequential in-
crease in the pinching force is matched by an increase in the anti-pinching force to be pro-
vided by a larger axial magnetic field. Finally. a greater value of the gas pressure in the promi-
nence requires a matching decrease in the magnetic pressure so that the total hydromagnetic
pressure 1s kept unchanged.

Freure 7 ~hows the variations when the coronal mass density. temperature, longitudinal
magnetie tield, or transverse magnetie field at the site of the prominence has other values, A
larger value of the coronal mass density requires a smaller prominence current and a larger
gas pressure 1n the prominence. The increased hydrostatic buoyancy force due to a larger
coronal mass density necessitates a smaller diamagnetic force (to be provided by a smaller
prominence current) so that together they provide the same upward force to counterbalance
the unchanged downward gravitational force. The increase in the pinching force due to a
larger umbient pressure (the decrease in the pinching torce by a smaller prominence current
bemng rather small) necessitates a larger ant-pinching torce to be provided by an increased
axial magnetce field. Next. a change in either the coronal temperature or in the longitudinal
magnetic tield of the corona does not affect the required prominence current because the
balancing between the gravitational force and the hydromagnetic buoyancy force is not af-
fected at all. However. the change does affect the requisite axial magnetic field. .\ larger
value ot the coronal temperature or the longitudinal magnetic field makes the ambienthydro-
magnetic pressure larger. The increased pinching torce 1s to be matched by an increased anti-
pinching roree to be provided by a larger axial magneuc fieid. Finally, a farger value of the
transverse magnetic tield of the corona requires a smaller prominence current in order to
produce the same diamagnetic force to counterbatance the unchanged gravitational force.
[he conseguential decrease in the pinching force necessitates a decrease in the axial magnetic

ticld i order to produce a smaller anti-pinching torce m the equitibrium.
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In the illustrative examples. not only in the equilibrium but also during the motion, the
hydromagnetic buoyancy force is largely dominated by the zeroth-order diamagnetic force
IgxB,. The higher-order part of the diamagnetic force due to the inhomogeneity of the
coronal magnetic field only amounts to a few percent and the hydrostatic buoyancy force is
even much smaller. Their percentages diminish in heliocentric distance. Thus, without the
action of the zeroth~order diamagnetic force due to the prominence current, prominences
are not able to move away from the solar surface.

Actually. when the prominence is close to the photospheric surface, the diamagnetic
force is enhanced by the mirror-current effect (Kuperus and Raadu. 1974). The polarization

current induced on the photosphere will exert an additional upward force on the prominence

currenrt in the amount of uIEZR.z/ZmO(rg—ROZ) (ct. Van Tend and Kuperus. 1978). Inclusion
of this torce will modify Equation (13) to
2
GM + “— 5 2 QZ 2

d
Py 0 = - eup_ QR
de = R ThBet T FACEE IR

Accordingly, for the prominence in the illustrative example the requisite current density re-

duces to J, = 1426.5 and the requisite magnetic field reduces to B, =26.44. With the mono-

polesstiengthening at the rate ofd‘IfM/dt =20, the disturbed prominence rises slightly slower.

See Figure 8. This is due to a smaller prominence current. The reduced I;; By, is not suffi-

ciently compensated by the added uIEZ Roz/Zwr(,(r&—R@z).
In conclusion, the calculations show the importance of the hydromagnetic buoyancy force
in the dynamics of prominence loops.
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CAPTIONS

Figure 1. Magnetic configuration resuiting from the interaction between a couple of mag-
netic monopoles on the solar surface and a large current carried by the prominence, with a

polarization current induced on the interface.

Figure 1. Profile of a stratified magnetohydrostatic corona at 2x 10° °K, with a mass density
of 3x 10’ electrons/cm”, a longitudinal magnetic field of 2 gauss and a transverse magnetic

field of 10 gauss at the solar surface.

Figure 3. Peripheral distribution ot the polarization current in the equilibrium configura-

tion.

Figure 4. Temporal evolution of the prominence as the monopole strength changes in time,

with d\, /dt=20 gauss-helioradius/hour.

Figure 3. Temporal evolutions of the prominence for disturbances with various values of
dw,,/dt.

Figure 6. Requisite values of -QJj, and By, for an equilibrium prominence with various
values of ry, Q, P, Or py.

Figure 7. Requisite values of 2uQJ, and B, for an equilibrium prominence in a coronal
medium with various values of p_, T, Booy» OF Boo, -

Figure 8. Temporal evolutions of the prominence w.ien the mirror-current effect is included
in the hydromagnetic diamagnetic force, with d'V,/dt=20 gauss-helioradius/hour (thick

lines). Dashed lines indicate the corresponding evolution without the mirror-currents.

176




Figure 1

-177




gauss

Figure 2

178

1.5

helioradii




5001~

-5001—

-1000—

-1500—

-2000

Figure 3

179




helioradii helioradii
10 0.05
81 0.04 -
0.03 | 0
0.02 |-~
0.01}
Vv
0 1 1 i 0 &_" l ' ! I
0 2 4 6 8 10 0 2 4 6 8 10
t hours t hours
helioradii /hours helioradii/hours
ix1d 1
- 8x10® |-
G B Booy -1, 2
0‘ pco%' +J°B°q_+l‘—§c—— ZP,,-(*;H lBD
el 6x104 = 1n 2
2Pt K Bo , 1.,2
o) +51o Q
ax10t |-
16
- e Ul nl - -
0 ' 0 I 4I 6| 8' 10
) 4 6 8 10 0 2
¢ t hours
hours
Figure 4

18¢



helioradii

10

oy

hours

helioradii /hours
1

0.8

Figure 5

181




gauss gauss
100 100
80.-
m—
40—-
2ok 1QJ,
0 1 I 1 0 | | i i
1 105 L1 LIS 0 140 240 a0 4xi6’ 56
I, helioradii Q kin
gauss gauss
100 50
B,
80 +- a0F
60 |- 5 0k
9 +QJ,
40 |- 20k
-7 0 +nQJ, ok - T T
0 | 1 ! 0 ! ! L
0 2xa0tt 4x10' extot! sxio't 1012 0 10 20 30 40 50
Pe electrons/cm’ (21Poo )2 gauss
Figure 6

182.



gauss gauss

50 50
B, B,
40k o
30F 30 -
3nQJ, 1nQJ,

26+ 200

10}~ 101

0 ! 1 1 I 0 ] ! { |

0 1x1@ 2x10° 3x10 4x10® Sy 0 1x1f 2x16 3xad axic® sxidf
o electrons/cm® Too °K

gauss gauss

50 100

B,
40r 80—
0= 60
$uQJ,

201 9

0 T 20

0 ! I ! | 0

0 { 2 3 4 5 0
B, gauss B, gauss
Figure 7

183




helioradii
10

(=)
[\
>
=)}
oo

10
t hours

1

0.8

0.2

t hours

Figure 8

184




A TIME-DEPENDENT, 3-D MHD NUMERICAL STUDY OF
INTERPLANETARY MAGNETIC DRAPING AROUND
PLASMOIDS IN THE SOLAR WIND

by

T. R. Detman,' M. Dryer,! T. Yeh,? S. M. Han,’
S. T. Wu,* and D. J. McComas *

September 1990 (revised)

Submitted to

Journal of Geophysical Research

To appear 1991

! Space Environment Laboratory, NOAA Environmental Research Laboratories, R/E/SE,
325 Broadway, Boulder, Colorado 80303-3328, USA

2 Cooperative Institute for Research in the Environmental Sciences, University of
Colorado, Boulder, Colorado 80309, USA

3 Department of Mechanical Engineering, Tennessee Technological University,
Cookeville, Tennessee, 38505, USA

* Center for Space Plasma and Aeronomic Research and Department of Mechanical
Engineering, Ua.versity of Alabama in Huntsviile, Hunt.. :lle, Alabama 35899, USA

5 Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA

185



ABSTRACT

Aspheroidal plasmoid is injected into a representative steady state solar wind at the lower
computational boundary of a 3-D MHD model at 18 solar radii. The field line topology of the
injected plasmoid resembles the streamline topology of a spherical vortex. Evolution of the
plasmoid and its surrounding interplanetary medium is described out to approximately 1 AU

for three cases with different values for the velocity imparted to the plasmoid.

In the first case a plasmoid is injected with a velocity equal to that of the steady-state back-
ground solar wind at the lower boundary (250 km s ™). In the second and third cases, the plas-

moid is injected with peak velocities of twice and three times the background velocity.

A number of interesting features are found. For instance, the evolving plasmoid retains its
basic magnetic topology, although the shape becomes distorted. As might be expected, the
shape distortion increases with the injection veiocity. Dévelopment of a bow shock occurs
when it is injected with a velocity greater than the sum of the local fast magnetosonic speed

and the ambient solar wind velocity. The MHD simulation demonstrates magnetic draping

around the plasmoid.
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INTRODUCTION

Solar radio heliographic evidence (Riddle, 1970; Smerd and Dulk, 1971; Stewart et al.,
1982) suggests that plasmoids are injected into the interplanetary medium during flare and/or
eruptive prominence episodes. Riddle (1970) and Smerd and Dulk (1971) reported opposi-
tely-polarized radioheliograph sources during a westward-ejected plasmoid on 1-2 March
1969. Riddle (1970) estimated densities in the source region as N 2 6 x 10%cm™ at both 2
Rand5R o, where R s the solar radius, 6.95 x 10°km. He also estimated magnetic fields
of H2 0.8Gat 2R oandH 20.08Gat 5 R Riddle suggestsa conﬁguration analogousto
a smoke ring puffed out from the site of the flare. Smerd and Dulk hypothesized that the
internal field structure was carried with the plasmoid into interplanetary space. Stewart et al.
(1982) detected a plasmnid on 27 April 1980 with the Culgoora radioheliograph; the meas-
urements strongly suggested the presence of closed magnetic fields within the plasmoid.
Based on the plasma emission mechanism (from a hot, dense, magnetically confined configu-
ration), they estimated the field magnitude to be > 0.6 Gat2.5R o They also estimated the
densities to be 3.5-5.7x107 cm ™ + 30%. More recently, Gopalswamy and Kundu (1989),
with the Clark Lake radioheliograph, inferred the presence of a slow-moving piasmoid fol-
lowing a flare on 2 February 1986. Assuming the presence of gyrosynchrotron emission at 50,
73.8, and 138.5 MHz, the plasmoid’s electron density was estimated to be on the order of

10° -10® cm™; the magnetic field magnitude was estimated to be 1-2 G.

Draping of IMF lines has been postulate ¥ (Gosling and McComas, 1987: McComas and
Gosling, 1988) to occur when a CME or a plasmoid plows through the interpianetary me-
dium, stacking up IMF lines on its front side. The nature of such draping was considered in
these papers. Additional studies that support these ideas are also presented by McComas et
al. (1988), who examined draping beyond 1 AU, and McComas et al. (1989), who proposed a
test of IMF draping based on in situ measurements. The present exploratory numerical study

war done to examine the stability, evolution and draping associated with one possible mag-
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netic configuration for such plasmoids. In this paper we are not considering “rope-like” mag-
netic configurations which have been invoked to explain the interplanetary “magnetic cloud”
observations of Klein and Burlaga (1982). It also is important to make a distinction between
the numerical simulations discussed in this paper and those made in the 1970’s (Wu et al.
1978; Dryer et al, 1979) for coronal transient behavior. The latter works (and a number of
related studies, e.g. Steinolfson and Hundhausen, 1988) demonstrated that magnetic field
lines will be distorted and forced (by virtue of high conductivity) around ejecta similar to that
in CMEs. In these simulations of the initial boundary value problem, the time dependent
coronal behavior was initiated by a change of thermodynamic properties (i.e. an energy in-
crease) in or around a localized region at the boundary of the computationai domain- the
base of the corona, for example. The present study is physically different. The perturbing
agentisa “projectile” that is injected with a prescribed momentum into the pre-existing solar
wind flow. As noted in recent reviews (Burlaga, 1985; and Gosling, 1990), no dynamical nu-
merical simulations have yet been made of the coupled plasmoid-solar wind, “projectile”
problem. Preliminary results of the work presented here were described in Dryer et al.
(1989). There are three primary advantages of MHD simulations: (1) they present global,
rather than local views of the interaction; (2) they are dynamic; and (3) they are intrinsically

quantitative, rather than qualitative, in their results.

In this paper we first discuss the method of computation, followed by a discussion cof the
results for several cases of plasmoid injection. We conclude with some remarks on the plas-
moid deformation, on the topological changes caused by numerically induced reconnection,

and on the draping of the IMF.
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METHOD

Our 3-D model (Dryer et al., 1986; Han et al., 1988, 1989) has a computational domain
with the lower boundary at 18 R, the upper boundary at 225 R ,, and the side boundaries
covering 90° of latitude centered on the equator and 90° of heliographic longitude. The grid
resolutions are respectively 3 R inradius, 3° in longitude and 3° in latitude; thus the nu-
merical gird is 70x31x31. The model uses the two-step, Lax-Wendroff finite difference ap-

proximation to the equations of ideal MHD with the addition of artificial viscosity (Han et al.,

1988). Our model uses the pseudo-conservation form of the equations to be solved:

[=1]

U , oF 1 3G 1 aH _
+ 2 — + v S, 1
t 73R T Rsnoa CETS M)

Q

where U is the variable vector, F, G, and H are flux vectors and § is the source vector (Han et
al,, 1988). Equation (1) expresses the induction equations, and conservation of mass, mo-
mentum and energy, without thermal conduction. Thus, except at shocks, the plasma behaves
adiabatically. Due to the use of the pseudo~conservation law form, the Rankine-Hugoniot
conditions are satisfied at any shocks which develop. This scheme is, however, inherently dif-
fusive and requires added explicit numerical diffusion (artificial viscosity) to stabilize it if any
shocks are present. The combination of inherent and explicit numerical diffusion causes
shocks to spread over 5 to 10 grid points and facilitates magnetic reconnection when oppo-
sitely directed fields are compressed together. All input to the computational domain takes
place at the lower boundary. The lower boundary is chosen at 18 R o because it was just be-
yond the critical points of the representatively chosen steady-state solar wind. There is noth-

ing special about this location other than that the flow there is both supersonic and super-

alfvenic.

We begin with a representative, steady-state solar wind. Steady-state conditionsat 18R

were selected by trial and error to obtain a match with observed conditionsat 1 AU . See, for
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example, Han et al. (1989). The IMF is assumed to be unipolar (outward) everywhere. Thus
this model contains no magnetic sectors and no heliospheric current sheet. The plasmoid is
introduced by a time-dependent perturbation of the lower boundary surface at 18 R . Con-
sider a plasmoid moving away from the Sun. Conditions on the surface at 18 R will be per-
turoed in a particular way as the plasmoid moves across that surface. We perturb conditions

on our model’s lower boundary at 18 Rgin just such a way.

The configuration of the plasmoid is analogous to the Hill vortex (Hill, 1894; Lamb, 1932)
in fluid dynamics; i.e., the magnetic field lines have the same topology as the streamlinesin a
smoke ring. Thus we are exploring numerically the suggestion made by Riddle (1970). Spe-
cifically, Hill’s spherical vortex (Milne-Thomson, 1955) is described ir terms of a Stokes

stream function,

~,

2 |
¥ = —:} V(l-‘ar—z)rzsinze' < a), @)

which represents inviscid fluid motion within a sphere of radius a, in spherical coordinates (7,

8/, ¢’ ) centered on the sphere. V'is the (constant) flow velocity far from the spherical vortex.

The stream function yields the velocity within the spherical vortex:

W(re')=-§—V é 1—--{-2 cosd - ¢ 1_2—"-2 sing’] . (3)
! 2 r a 2 9’ a 2
Therefore the radial velocity is zero at the interface, r=a.

The vorticity, { is given by

{= é(b[-%%‘—;f sin 6' (r < a). (4)

Thus the vortex lines are circles perpendicular to the axis of symmetry, and the vorticity has a

constant value on any such circle. This Hill’s vortexis surrounded by a fluid that streams past it
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with a velocity, V. The tangential velocity is continuous at the interface  =a. Stagnation
points exist at the leading and trailing polar points (6! = 0, 7) of the sphere, and a ring vortex
existsat r= a/2}/2 and 6’ = /2. The motion of the fluid outside the spherical vortex is the

same as if the sphere were a solid sphere of the same radius. The stream function for the

external flow is

=Ly -8, 2520
q,__.__z- (-r3)r sin28 (r>a). )

In a contour plot of ¥, such as Figure 1, contour lines correspond to streamlines.

We have used this classical fluid vortex as the analog for our magnetic plasmoid. Specifi-
cally, we take \r to be a flux function instead of a stream function which then yields magnetic
field instead of flow velocity. Also the perturbation which injects the plasmoid into the model
must be specified in time and the heliocentric spherical coordinat'es of the MHD model 6 and
¢ on the R= 18 R surface such that axial symmetry is maintained. Current density is the
analog of vorticity and we have two neutral points analogous to the stagnation points of the
Hill vortex. Current in the plasmoid flows in a loop around the axis of symmetry which points
in the radial direction away from the Sun. Thus, the stream function for Hill’s vortex is used to
describe a magnetic plasmoid. The magnetic field at the center of the sphere reaches a peak
value of ~3/2 times the steady state value (150 nT), i.e. the field in the center of the plasmoidis
toward the sun, while outside the plasmoid the field is directed away from the Sun. In adapt-
ing the Hill stream function to generate a magnetic plasmoid we made two significant altera-
tions: (1) we constrain the perturbation to be limited in both space and time; and (2) the con-
figuration of our plasmoid has both poloidal and toroidal field components. The magnitude
of the poloidal component relative to the toroidal is arbitrarily set at a factor of 1/10. Figure 1

shows only the toroidal component. We have not considered other ratios. A plasmoidal field
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line is like a “slinky” toy with the two ends held together. The final flux function for the field

outside the plasmoid is:

q;:-%V(]—%)rzsinze' - (a<r<b). (6)

The toroidal field component has the form:

o1 LAV
B,= - Bol -S)Tsin0’  (r<a), M

where By is the steady state value of the radial component of the IME. For this study we have
chosena = 18 R® x 18° = 3.9 x 10 km, see Figure 1 (b),and b = 2a. The density and
temperature inside the plasmoid are takentobe 1.4 x 10%m™ and 1.1 x 10° K respective-
ly, the same as the background values at the input location, 18 R o There the sound speedis

174kms™ and Alfvénspeedis87kms™. Thusthe 250 kms™! steady state flow speed at the

lower boundary is super-sonic and super-Alfvénic.

We present three cases. In Case One, the plasmoid enters the grid with no change in veloc-
ity from the steady state. In Case Two, the velocity at the center of the plasmoid reaches a
factor of 2.0 above the steady-state velocity; and in Case Three, 3.0 times the steady-state
velocity. A cosine profile is used to smoothly taper from the peak velocity at the center of the

plasmoid down to match the steady state velocity at a radius b from the center of the plasmoid.

Since we have made modifications to the original stream function as described by Hill, e.g.
the spatial confinement described by (6), the toroidal component described by (7), and the
velocity perturbations described in the preceding paragraph, it is possible that our final input
boundary perturbation may no longer be strictly solenoidal. We investigated two methods of
enforcing solenoidality on the input boundary perturbation, so as to avoid introducing mag-

netic monopoles into the grid. The first, described in Yeh and Dryer (1985) is based on Fara-

o~ i 1C does nol
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day’s law of magnetic induction applied tc the model boundary at 18 R . We implemented
this method in an iterative scheme which adjusted B on the lower boundary until Faraday’s
law was satisfied. The second method, the one we settled on for all computations described
herein, is more direct, but involves field quantities inside the grid. We start with the second
order centered difference formula for v - B atI=2, the first interior radial grid position. We

then solve this for By at I=1, substituting 0 for the value of v - B. This gives,

R}

7l BR (ABo + 4By) ®

2
Br(1,].K) = f;—% Br(3.J.K) +

where

_ (sin6y41Bg,,, - sinfy_1By, )

AB
6 2R,A05in 0;

AB.s = (Bggs, - B¢x-1)

2R,A¢sin 6y
Here Bg(1,J,K) is the value of By at grid point (IJ,K) where I, J, K are the grid indicesin the R,
0, and ¢ directions respectively. We use (8) to find By for all points on the lower boundary at
each time step, i.e. for all J and K. This guarantees that v - B = 0 at I=2 at each time step.

Any departures from v . B = 0 further inside the grid are thus due only to numerical error,

which is discussed below.

The validity and accuracy of the numerical method used for this study are discussed by
Han et al. (1988). In addition, we made several diagnostic checks to assess the validity of the
numerical calculation. In the first check, we computed the total energy within the entire com-
putational domain for the exceptionally stringent Case Three. The total energy in the model
grid (the sum of kinetic, thermal, magnetic, and potential) increased smoothly from the back~
ground value of 5.73 x 10¥ergsatt = 0hto6.18 x 10*lergsatt = 15 hasthe plasmoid was
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injected. Total energy then decreased slowly to 6.15 x 10*!ergs att = 48 h. Plasmoid injec-
tion thus added 0.45 x 103! ergs to the model grid, and 0.03 x 10*!ergs were subsequently
lost (some through the sides of the grid). This indicates conservation of energy to 0.5% of
total energy or 7% of the added energy. We consider this satisfactory. In the second diagnostic
check, we estimated the effect of numerical round-off, etc., on the requirement of
solenoidality (v - B = 0). For this purpose we calculated the total (fictitious) monopole force,
Bv . B,and compared it with the Lorentz force, (v x B) x B asa function of time. The result
was that the former was typically 1% of the latter, indicating a very acceptable level of non-
solenoidality in the computation. The Lorentz force, for this particular case, was generally
one to three orders of magnitude lower than the pressure and gravitational forces, thereby

indicating the fictitious monopole force to be insignificant.

RESULTS
For the three cases noted above, we wili describe a number of features pertaining to the
unit IMF vectors. The IMF unit vectors indicate direction, but not magnitude, which changes
by orders of magnitude between the inner and outer boundary of the model. We also present
several contour plots of the physical parameters at a representative radius for the first case,
3-D plots of IMF lines for all three cases, and finally time series plots of magnetic field compo-

nents as they would be observed by a spacecraft located in the path of the plasmoid.
Unit IMF Vectors

Figure 2 shows the unit IMF vectors in the equatorial plane at four times (¢ = 24 h, 48 h,
72 h and 96 h) during the interplanetary evolution of the Case One plasmoid that wasinserted
at the lower boundary (18 R o ) at the background solar wind velocity (250 km s71). As the
plasmoid is convected outward, increasing B , due to the Archimedian spiral causes asymme-
try in the external and internal currents which combine to force the nose of the evolving, ellip-

soid-like volume eastward. (To an observer facing the Sun east is on the left.) While the nose
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moves eastward, the tail moves westward. Thus, distortion occurs but with no net deflection
of the plasmoid from the radial direction. The approximate boundary of the plasmoid is
sketched-in at t=96h in Figure 2. This result is in agreement with the observationatly based

suggestion that shockless (i.e., co-moving) plasmoids have no net average deflection (Gosling

et al., 1987b).

Case Two and Case Three are shown in Figure 3 and Figure 4, respectively, for approxi-
mately the same times as for the first case. Here, the plasmoid enters the lower boundary with
peak velocities of twice and three times, respectively, the background solar wind velocity. As
the plasmoid approaches the outer grid boundary at 225 Ry its final velocity is about 420 km
s”! in Case Two, and about 490 km s ' in Case Three. Hence, for these two cases, the plas-
moid is always moving at super-characteristic speeds. For comparison, the plasmoid’s final

velocity in Case One was about the same as the ambient solar wind speed at 225 R o 360 ke

s™!. We have sketched (in Figures 3 and 4) the approximate location of the plasmoid surface.
These figures also show the locations of the bow shocks. Shock locations were obtained from
contour plots of entropy rise, and overlaid using a light table. The thicknesses of these shocks
are a numerical artifact, as discussed earlier. Note the deflection across the shock of the vec-
torial directions from the original Archimedian spiral. These shock are quasi-parallel on the
east flank, and quasi-perpendicular on the west, thus little or no change in direction is evident
in those locations. Similar deflections occurred in Case One, however in that case, the deflec-
tion was caused by non-linear fast mode waves. The increased magnetic pressure and curva-
ture forces and the increased shock-induced thermal pressure on the leading (anti-sunward)

surface of the plasmoid, together flatten it from its original shape. Its relatively flatter shape,

compared with Case One, is evident.

It should be noted that, because of the coarse grid size in our numerical simulation, we do
not track the precise boundary of the plasmoid. This limitation of the simulation might be
improved with an extensive study of finer grid sizes, but that is beyond the scope of this study.
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Thus, our sketch of the plasmoid’s boundary is only a reasonabie approximation. In spacecraft
measurements, such boundaries are believed to be indicated by onset of bi-directional elec-
tron heat flux signatures, as well as the bi-directional energetic particle flux signatures men-

tioned earlier (Paimer et al., 1978; Gosling et al., 1987a; Marsden et ai., 1987)

Contours of Physical Parameters at R = 129 R®

Another way of examining the properties of the evolving plasmoid and its interplanetary
environs is to plot contours of the dependent variables on a spherical segment at various he-
liocentric radii. Figure 5(a,b) shows, for Case One, contours of constant plasma number den-
sity and temperature at¢ = 72 h on a spherical surface at R = 129 R o (The mass density
labels are shown in units of 10"’kg km ™ ). Note that iiie “cross section” is nearly circular,
with number densities at 16 cm™ in the center and 20 cm > at the plasmoid’s surface (where
the pressure is ccatinuous). Although the plasmoid’s motion for Case One is passive, acceler-
ating at the same rate as the solar wind, the inhomogeneity of the upstream, spiral IMF pro-
duces a larger, fast-mode compression on the westward (right) side of the plasmoid: up to 21

cm™ as compared with only 19 cm™ on the eastward (left) side.

It is interesting to note that the major distortion of the plasmoid is always seen (Figure 2)
in the equatorial plane, where the effect of the spiral IMF is maximized. At the moderate
heliolatitudes (about + 20°) the change in the spiral angle is small (Han et al., 1988), with a

negligible effect on the spheroid’s distortion in the meridional plane.

Perspective views of IMF Lines

A3-D view of a few IMF lines is shown in Figure 6(a-c) for Case One at¢ = 48 h, 72 h,and
96 h. These figures show a box whichis 1 AU on each edge. Only 15, originally Archimedean,
field lines in the equatorial plane, separated in heliolongitude by A = 6°, are used in this
presentation. Their projections onto the lower plane of the box, parallel to the equatorial

plane, are shown as dotted lines. The plasmoid’s field lines are not shown in this figure. The
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observer is located at 8 AU, 8 = 60° (the solar co-latitude), and ¢ = 20° (where the X-axis

along the lower left side of the box points in the ¢ = 0° direction).

Note that, in Figure 6(a), the fourth IMF line from the left is seen to go around the plas-
moid then loop back through the center of the plasmoid. Thisis the firstindication that recon-
nection (caused by numerical diffusion) has occurred for those IMF lines that come into close
proximity to the neutral points at the nose and tail of the plasmoid. In this model reconnec-
tion results from the coarse grid and the highly diffusive Lax-Wendroff numerical scheme.
Although reconnection is exaggerated in these simulations, it does satisfy the rigorous defini-
tion adopted by Spicer (1990). It does show the type of global change§ in magnetic topology
real reconnection would produce. The idea that the external IMF and the internal plasmoid
field lines may reconnect was first proposed, to our knowledge, by McComas et al. (1988).
Although the magnetic configuration of the piasmoid is changed reiatively little by this recon-
nection, the globai view of external and internal field lines shows that the plasmoid’s topology
is now that of a torus rather than that of a sphere. A number of IMF plots show lines looping
back through the “hole in the donut” one or more times. We estimate our grid magnetic Re-

ynolds number to be of the order of 300 near the neutral point at the nose of the plasmoid.

The viewing perspective for Case Two, illustrated in Figure 7, is the same as used in Figure
6. Figure 7(a—c) shows the IMF ats = 24 h, 48 h, and 72 h. The computed topology of one
field line belonging to the plasmoid itself is shown in Figure 7(c). This configuration supports
the speculation of Smerd and Dulk (1971) concerning the left- and right-hand polarization of

plasma spiraling around self-contained magnetic field lines based on their radioheliograph

observations of a plasmoid near the Sun.

In Case Three, increased pressure forces cause greater distortion of the shape of the pias-
moid. In Case One the shape is roughly spherical while in Case Three the shape is roughly
hemispherical with the flat side toward the sun. Asexpected for Case Three, the IMF draping

seen in Figure 8 is more pronounced than the other cases. and a stronger bow shock is pro-
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duced. We have shown, in this figure, a single set of co-rotating field lines at three different
times. One particular field line is emphasized at the three times shown in this figure in order

to demonstrate its ever—increasing amount of draping,.
Time series of magnetic field components

Figure 9(a~c) shows the magnetic field signatures which a spacecraft sitting in the equato-
rial plane and in the path of the plasmoid near the axis of symmetry would experience. In Case
One where no draping is expected, the magnitude of B ,first decreases as the plasmoid arrives.
In Cases Two and Three, the signature of draping is evident as an increase in the magnitude of
B 4 (eastward deflection) as the plasmoid approaches. B ydeflects eastward due to the com-
pression of fieid lines stacked up on the front of the advancing plasmoid. In Case Two the
magnitude of B 4is increased moderately, about 60%; in Case Three it is increased by 120%.
These results suggest a linear relation between the injection veiocity and the amount of drap-
ing. Note, also, that a moderate rotation of the field occurs within the plasmoid, lasting for
many hours, In this respect our plasmoid resembles the magnetic cloud observations of Klein
and Burlaga (1982), however, the behavior of |B| in Figure 9, together with that of B, lower
panel, indicate that the spheroidal plasmoid, as we have modeled it, is not a good candidate to
explain the magnetic cloud observations of Klein and Burlaga (1982). A prominent feature of
the spheroidal plasmoid is the region of reversed sign of the radial field component in the
central region. An adjunct of this is a surrounding shell of high 8 associated with the zero
crossing of the radial field component. However, the dynamics are non-trivial as indicated by
the region of very low 8 in the central region of the plasmoid in Case Three (lower right pan-

el). We have not searched spacecraft data for signatures resembling those of our plasmoid.

CONCLUDING REMARKS
We have combined our 3-D Interplanetary Global Model (3-D IGM) with a diamagnetic
plasmoid (in analogy to a spherical vortex) to demonstrate the dynamical evolution of a plas-

moid in an ideal conducting medium. The entrance of a plasmoid into the 3-D computational
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domain is effected by time-dependent conditions on the lower boundary (18 R ). We simu-
lated plasmoids to study their evolution and as a means to study IMF draping. Although the
microscale position of the IMF/plasmoid boundary was not demonstrated due to use of MHD

(fluid) approximations and coarse grid resolution, the large-scale topology of both sets of

field lines is reasonably well-approximated.

Several numerical experiments were performed. In Case One, the plasmoid was con-
vected with the ambient solar wind speed across the lower boundary with no deviation from
the background solar wind velocity (250 km s™") at that boundary. in Case Two (and Case
Three), the plasmoid entered with additional momentum such that the peak velocity was

twice (three times) that of the lower boundary’s steady-state value.

In Case Te, the plasmoid also survives injection into the computational domain and, in
fact, generates a bow shock as would be expected in this “projectile” experiment. The plas-
moid becomes flattened; its radial extent is less than that in Case One, and its transverse ex-
tent is greater. As in Case One, reconnection changes the topology from a spheroid to a torus.
In addition, substantial draping of the IMF is apparent on the front, westward side of the plas-
moid, thereby supporting the suggestions of Gosling and McComas (1987) and McComas and

Gosling {1988). All of these characteristics are, as expected, enhanced for Case Three.

Itir impossible to present here all of the evidence available to the investigators. For exam-
ple, one of our most used graphical aids has been animated 1D traces of various quantities
along a radial line near the plasmoid axis of symmetry. Another, which we have chosen notto
present, is color contour plots in equatorial and meridional planes. Yet another is “real” 3D
stereoscopic views of magnetic field lines such as those presented in Figures 6,7, and 8. These
were achieved by making 35mm “left” and “right” slide pairs where the “eye” positions dif-

feredby Ad = 3°. These are viewed with a hand held viewer which holds two slides, one for

each eye. 199
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Although not shown here, we noted that the force free condition, (v x B) x B = 0, was
never exactly satisfied but the maximum angular separation of J ,i.e. (v x B), and Bwas usual-
~ lylessthan 10°. This lends support to the use of force free models such as by Suess (1988) and
Burlaga (1988) which have been relatively successful in predicting cbserved field orientations
in magnetic clouds (as reviewed by Gosling, 1990, and Burlaga, 1989). It also encourages us
to try to accommodate the more complex boundary conditions presented by the “rope-like”

low beta configurations.

The present study demonstrates a valuable, dynamically self-consistent, new MHD simu-
lation tool for studying the development of plasmoids as they propagate outward into the in-
terplanetary space. This 3-D tool clearly allows the study of IMF draping around such plas-
moids out of the ecliptic where it is difficult to sketch the spiraling of the IMF on conically-
shaped surfaces - even on an intnitive basis. This capability is paruculzcly iinportant in light

of the upcoming (October 1990) launch of the out-of-ecliptic ULYSSES mission.
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FIGURE TITLES

Figure 1. (a) Modified spherical vortex of radius a. Each contour, together with its mitror
image, shows the surface of a cylindrical stream tube. The stream funéﬁon was
modified to make the flow uniform beyond the radius b=2a. Note the region of
reversed flow in the central region of the vortex. In (b) the geometry and rclative
size of the plasmoid is shown as it is introduced into the model grid by perturba-
tion of the lower computational boundary. The diameter of the plasmoidat R =

18Rgist = 18R x18° = 3.9 x 10 km.

Figure 2. Distortion (Case One) of the initially spherical plasmoid is indicated by unit IMF
vectors in the solar equatorial plane at four different times. In Case One, the plas-
moid is convected into the solar wind with the initial background solar wind veloc-

ity of 250 km s! at 18 Ro

Figure 3. Distortion (Case Two) of the initially spherical plasmoid as indicated by unit IMF
vectors in the solar equatorial plane. The plasmoid is injected into the solar wind

with peak velocities of twice the initial background solar wind velocity of 250 km
s! at 18 R ;. The approximate trace of the plasmoid surface in the equatorial

plane is sketched-in. Shock position was transferred from a matching contour

plot of entropy increase.

Figure 4. Distortion (Case Three) of the initially spherical plasmoid as indicated by unit IMF
vectors in the solar equatorial plane. The plasmoid is injected into the solar wind

with three times the initial background solar wind velocity.

Figure 5. Density (a) and temperature (b) contours on a segment of a spherical shell through
the Case One plasmoidat R = 129 R yandt = 72 h. The viewing perspective is
toward the Sun; thus “west” is to the right, “east” to the left. The density labels are

given units of 107> kgkm™; 320 x 10> kgkm™? is equivalent to a number den-
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sity of 19 cm ™. Note the asymmetry in the compression and adiabatic heating on

the west compared with that on the eastward side of the plasmoid.

Figure 6. Initially equatorial IMF lines at¢ = 48 h, 72 h, and 96 h for Case One. The plasm-

oid’s field lines are not shown in this figure. The viewing perspective is from 8 AU,

6 = 60°, ¢ = 20°.

Figure 7. Initially-equatorial IMF lines at¢t = 24 h, 48 h, and 72 h for Case Two. The viewing
perspective is from 8 AU, 6 = 60°, ¢ = 20°. In(c) we have traced out one field

line of the plasmoid and indicated the location of the bow shock on the floor of the

1 AU cube.

Figure 8. Initially-equatorial IMF lines at t = 24 h, 48 h, and 68 h for Case Three. The plas-

moid’s field lines are not shown in this figure. The viewing perspective is from 8

AU, 6 = 60°, ¢ = 20°.

Figure 9. Time series plots of magnetic field components (upper panels) as seen by a space
craft lecated at 0.72 AU and sitting 1.5° below and 1.5° to the west of the radial
extension of the plasmoid’s initial axis of symmetry. The corresponding time se-
ries of plasma beta ( = 2nkT/(B2/81) are shown in the lower panels for Cases

One, Two and Three. The shaded regions indicate the approximate plasmoid

boundaries.
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V. NUMERICAL MODELING OF GLOBAL INTERPLANETARY ENVIRONMENT

In this section, we reported the newest three-dimensional, time-dependent
magnetohydrodynamic model of extended corona. This model provided steady and
time-dependent solar wind solutions in three dimensions. Thus, it can be used
as a diagnostic tool for the calibration of instruments for observation using
the steady solution. The evolutionary solution can be utilized for the
examination of the disturbed solar wind due to solar disturbances. The
preliminary results deduced from this model will be published as an invited
paper in the J. Adv. Space Research. Another paper is also included in this
section which describes the interplanetary consequences due to solar

disturbances.

Numerical Simulation of Solar Distrubances and Their
Interplanetary Consequences in 1990 IAU Symposium on
“Basic Plasma Processes on the Sun" E. R. Priest and V.
Krichan {2ds}), 331-340.

Numerical Simulation of Extended Corona in J. Adv. Space
Res. (to appear) 1991,
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NUMERICAL SIMULATIONS OF SOLAR DISTURBANCES AND THEIR INTERPLANETARY
CONSEQUENCES
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1Sxmce Environment Laboratory

National Oceanic and Atmospheric Administration
R/E/SE, 325 Broadway

Boulder, Colorado 80303-3328
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Department of Mechanical Engineering
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ABSTRACT. Responses of the solar atmosphere and interplanetary medium to
simulated solar disturbances were studied by time-dependent, MHD numerical
simulations. This deterministic initial-boundary value problem was at-
tacked in the classical way: a representative steady state is first estab-
lished, then input parameters at the lower near-Sun boundary are per-
turbed. We discuss a number of 2- and 3-dimensional examples of coronal
mass ejection (CME) simulations and some current controversies concerning
the basic process of CME initiation. Footpoint shearing motion is tested
to see whether it can provide a reasonable mechanism for CME development
from arch filament configurations.

We also demonstrate possible interplanetary consequences to CME-like
disturbances by using 3-D simulations to determine the dynamic response of
the solar wind to a plasmoid injection from an eruptive filament or promi-
nence. We also discuss the separate possibility whereby a plasmoid may be
generated in the interplanetary medium by a solar-generated shock that
propagates through a heliospheric current sheet. Application of the 3-D

model for the interpretation of interplanetary scintillation observations
is also discussed.

1. INTRODUCTION

1.1 Near-Sun Activity

The origin of coronal mass ejections (CMEs) is one of the major topics
currently under active debate. Observations by white-light coronagraphs
led to the first ideas and models for CMEs. Coronagraph images are pro-
duced by Thomson scattering of photospheric photons by coronal electrons.
In addition to the problem of CME origin, the problems of CME propagation
and evolution in interplanetary space are also important topics which pro-
vide the backdrop for this paper.

A variety of phenomenological descriptions have been applied to the
transient white-light images detected by coronagraphs. First 0SO-7 and
then Skylab, P78-1, and SMM have contributed to the observations. As ob-
served in the solar-occulted plane of sky (Howard et al., 1985), these
traveling images have been called curved fronts, spikes, bubbles, loops,
blobs, etc. Some workers consiuered them to be more-or-less planar struc-

E. R. Priest and V. Krishan (eds.), Basic Plasma Processes on the Sun, 331-340.
© 1990 IAU. Printed in the Netherlands.
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tures or helical, magnetically bound loops that escaped the Sun’s gravita-
tional attraction; other workers considered them to be compressions (fol-
lowed by rarefactions) in the corona, produced by near-surface energy
conversion that expanded quasi-spherically. Their rate of occurrence and
solar-cycle dependence are in statistical dispute, with differences (one
per day vis-a-vis two per day) most likely caused by variations in
coronagraph design, resolution, and duty cycle. About half of the CMEs are
associated with filament eruptions (easily detected at the solar limbg);
some are associated with solar flares (not easily detected near the limbs
because of the awkward remote-sensing line of sight from Earth); some are
associated with both of the above; and sometimes there are no optical, ra-
dio, or x-ray observations temporally and spatially associated with CMEs
(Munro and Sime, 1985; Webb and Hundhausen, 1987).

Three theoretical descriptions (reviewed by Dryer, 1982) have been
offered: (a) White-light "loops" are magnetically driven by stresses in
the curved, moving plasma column; (b) White-light "loops," followed by de-
pleted brightness, are quasi-spherical shells of compressed coronal plasma
followed by rarefactions; these "locps" are produced by a localized, near-
surface change of properties in or near active regions; (c) Very-large-
scale coronal magnetic topologies become unstable and trigger CMES in some
way.

Klimchuk (1989) has discussed theoretical ideas for physical mecha-
nisms of CME initiation. He first identifies three basic questions:

"1) What causes the disruption of the large-scale magnetic field/plasma

configuration?

2) How does the system evolve once the disruption bhegins?

2} How dcos the disruption trigger solar flarest® -
Klimchuk addresses the first question within the framework of quasi-static
evolutionary modals. The second, he suggests, "will require a fully time-
dependent MHD treatment." As noted by Dryer and Wu (1985),this point has
been studied extensively. The third question is "likely [he noted further)
to involve non-MHD plasma processes." Neither Klimchuk nor we discuss this
third question.In SECTION 2 below, we discuss a numerically demonstrated

MHD treatment that, in our opinion, is relevant to both the first and sec-
ond questions.

1.2 Interplanetary Activity

Several radio astronomers (Hewish and Duffett-Smith, 1987; and Hewish and
Bravo, 1986) have interpreted their observations of interplanetary scin-
tillation (IPS) to be associated with geomagnetic activity. Scintillations
of distant radio galaxies’ radiation are caused by density fluctuations in
the intervening solar wind. These fluctuations can be used to generate
maps of enhanced and depleted solar wind density. These workers (see,
also, Tappin et al., 1988) introduced an ability to generate "interplane-
tary images" of compressed and rarified solar wind plasmas once each day.

A controversy stems from the radio interpretation of these maps when
the density-enhanced regions are back-projected to the Sun. The point of
ejection is (according to Hewish, 1988) within (or within a 45° circle
surrounding) a coronal hole. Hewish (1986) therefore inferred that an
erupting strecam within a coronal hole emits very-high-momentum flux that
expands into a large (- 90°) heliolongitudinal expanse and persists for
several days. This high efflux of energy, he claims, is the source of geo-
magnetic storms. He asserts that solar flares are peripheral events.

The alternative view, as expressed by most of the solar physics com-
munity, is that the energy influx to the interplanetary medium is due to
magnetic eruptions which produce a complicated interaction of shocks, com-
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pressions, and rarefactions. The net result [suggested by the 2-D and 3-D
numerical MHD simulations by Dryer, Smith, and Wu (1988)] is the high dy-
namic pressure and IMF amplitude, negative B, that are required for geo-
magnetic activity.

A number of transient interplanetary events (often preceded by
shocks) have been described by spacecraft investigators as "magnetic
clouds," or "plasmoids" (see the review by Burlaga, 1989). These magnetic
clouds are characterized by: (1) a rotation of the IMF polarity through a
large angle during a temporal interval of about a day, (2) an IMF magni-
tude which is higher than average, and (3) a solar wind temperature which
is lower than average. It is not. known if the global topology is discon-
nected from the Sun (i.e., a plasmoid); if the IMF is still connected to
the Sun at both ends (i.e., extension of a solar loop arcade as suggested
by Cold, 1959); or if the propagating shocks introduce large-amplitude MHD
waves in their wake that cause the IMF to twist, then unwind, with one end
rooted in the Sun and the other in interstellar space (Dryer, Wu, and
Gislason, 1983). The plasmoid and extended loop are currently attracting
much attention together with the notion of twisted, nearly-force-free, IMF
vflux ropes."

Another interesting observational inference (based on jin_situ obser-
vations) is concerned with the IMF external to the magnetic cloud. Gosling
(1989) has reviewed work that suggests that IMF draping around the object
occurs in the sheath region between a bow shock and the presumed boundary
of the "CME." Although there is no objective criterion for identifying the
boundary of a "magnetic cloud" (Burlaga, 1989), this inference is reason-
able, par<icularly if the object (CME, magnetic cloud, etc.) moves rela-

tive to the background solar wind with a velocity greater than the local
magnetosonic speed.

2. RESULTS

2.1 Shear-Induced Instability

Figure 1 shows the schematic representation of a dipole magnetic
field in an initial state of equilibrium in a stratified atmosphere. A
2 %-D (i.e., non-planar) MHD model is used to simulate the response of the
exponentially stratified atmosphere to a photospheric shearing motion as
indicated by the sinusoidal velocity profile in Figure 1. It was found
that upward plasma flow velocities are gen~rated in the vertical direc-
tion. The velocities grow exponentially at first, with a growth rate equal

to V8V A8), where V, is the average Alfvén speed and a™ is the char-
acteristic length scale. The growth rate is saturated by the Lorentz
force, but growth continues until it reaches the same order of magnitude
as the Alfvén speed. MHD instability, which we suggest may be called
"shearing-induced instability" (SII), occurs shortly thereafter. Physical-
ly, the simulation suggests that the central magnetic field lines are
pinched, and the outer loops stretch upward with a tendency to open. This
process may be considered as one of the fundamental mechanisms for CME
initiation (Wu, Song, Martens, and Dryer, 1990).

The SII was studied for three values of plasma beta, B = 15.4, 1.54,
and 0.08. The characteristic Alfvén velocities for these three cases are,
respectively: 4.687, 46.7, and 232 km s! ., Figure 2 shows the maximum up-
ward velocity within the computational domain as a function of time. The
peak shearing velocity (Figure 1) was 5 km s for the two high values of g
and 15 km s for the (more realistic) lowest value. The growth rate for
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Figure 1. Schematic representation of an initial magnetic field (dipole)
arcade which is subsequently sheared at the phctosphere by the indicated
velocity profile. The computational domain is: x = 4 8.4 X 103 km, and
y = 8 X 10° km. (Wu, Song, Martens, and Dryer, 1990.)

these upward velocities became unstable when the maximum deviation of the
field at the coronal base reached shear angles of 63°, 48°, and 21° for B
= 15.4, 1.54, and 0.08, respectively. Thus, instability is indicated for
moderate shearing angles when the plasma betas are low, as expected in the
lower corona.

It is important to note that the forcing function is a finite-
amplitude perturbation upon a stable configuration that eventually becomes
unstable. Reduction of the peak shearing velocity of 15 km s~ to a more
gentle value, say 0.15 km s , could be accomplished via the principle of
dynamic similitude (c.f., Wu et al., 1988). The computational run time
must then be longer. In the present case of B = 0.06 (the "prototype"),
the same realistic beta could be maintained for the *model," together with
the same Struhal, Euler, and Froude numbers as well as the same ratio of
magnetic to kinetic energy for a dissipationless fluid.

As suggested above, however, there is a problem in this particular
case. The prototype ran for 7 Alfvén periods, where the Alfvén time was 35
seconds. Because of the desired hundred-fold decrease of shearing veloc-
ity, the model’s rather excessive temporal requirement, T,,, would be:

Tu =T X 35 X 10° = 24,500 s.
2.2 Solar-Injected Plasmoid into the Solar Wind

Using the 3-D code of Han, Wu, and Dryer (1988), Detman et al. (1990) have
simulated the injection of an initially spherical plasmoid into the solar
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Eigure 2. Maximum upward velocity in the computational domain (Figure 1)
when photospheric shearing of a dipole magnetic field takes place. Note
that "shearing-induced instability" takes place at t = 200 s, for g8 =

0.06, after approximately seven Alfvén times. (From Wu, Song, Martens,
and Dryer, 1990.)

wind. The plasmoid possessed both toroidal and poloidal magnetic field
components, like a set of concentric "slinky toys" placed end to end. The
plasmoid survived the injection and continued to propagate through the so-
lar wind, even producing a substantial shock wave when injected at a speed
greater (relative to the background solar wind velocity) than the magneto-
sonic speed. The approximate positions of the plasmoid and its shock wave,
and the draping of the IMF around the plasmoid, were determined. Figure 3
shows a 3-D view of some representative IMF lines and their draping around

the plasmoid. A representative magnetic field line within the plasmoid is
also shown.

It is interesting to note that some reconnection (due to numerical
diffusion) takes place between some of the plasmoid field lines and IMF

lines that come into close proximity to the neutral points on the front
and rear positions of the plasmoid.

2.3 Plasmoid Created at Helicspheric Current Sheet

In a separate numerical experiment, Dryer et al. (1989) showed how a ci-
gar-shaped plasmoid might be generated by a shock wave that propagates
through a flat heliospheric current sheet. The high total pressure, formed
by the 3-D shock wave just within its outermost envelope, decreases to low
values within the central portion, i.e., near the IMF reversal zone. The
high pressure gradient, generated by the outward-moving, large-scale

220




24 hours

(a)

21- 4.6/

>‘
e A4
2N
D\
/‘.::‘

%¢,

%

2t-4W.6R)

48 hours

®)

= NN
/")( 7 \\\\ s
/.//} H

bow shock m projection

()

Figure 3. A 3-D view of the IMF as it is deflected by the bow shock, its
draping around the solar-generated plasmoid, and a single helical magnetic
field line within the plasmoid. Initially eguatorial IMF lines are shown
at t = 24, 48, and 72 hours in panels (a), (b), and (¢), respectively. The
viewing perspective is from 8 AU, 6 = 60°, ¢ = 20°, where 9 is the helio-

colatitude and ¢ is the heliolongitudinal angle measured from the lower
left of the 1 AU-sized box.

(Detman et al., 1890.)
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heliospheric shock wave, forces the opposite-directed IMF field lines to-
gether and causes them to reconnect.

Figure 4 shows the initial stage of reconnection at what will be the
leading edge of the cigar-shaped plasmoid. Reconnection also takes place
at the rear, pinching off the opposite-directed IMF as the entire struc-
ture propagates through the solar wind. The "cigar" would be oriented in a

direction transverse to the outward motion of the large-scale global dis-
turbance.

4. CONCLUDING REMARKS

We have briefly summarized some of our ongoing work in the field of non-
planar and 3-D numerical simulations of solar disturbances and their pos-
sible interplanetary consequences. The classical initial boundary-value
approach is scrupulously followed to ensure a deterministic response when-
ever a stable initial state is perturbed by a set of observationally in-
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Figure 4. Initial stage of a cigar-shaped plasmoid that is formed in the
interplanetary medium by the propagation of a shock wave through a flat

heliospheric current sheet. (Dryer et al., 1989; S.M. Han, private comm.,
1989.)
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ferred parameter changes. Numerical experiments of this kind are a neces-
sary step beyond the "cartoon" stage, and must be undertaken with the
solution of the mathematical expressions for well-known physical laws to-
gether with reasonably chosen assumptions. The insight derived from simu-
lations such as the three described here are essential for understanding
large-scale global processes. Only investigation by multiple, in situ,
spacecraft missions can confirm or refute the global predictions of such
3-D numerical experiments. Such missions have yet to be undertaken.

§. ACKNOWLEDCMENT

This work was supported in part by NASA Order No. 17,015 to NOAA Space En-
vironment Laboratory (MD, TRD), and by NOAA Contract 5ORANR-700099,
NAGW-9, and AFOSR Grant 88-0013 (STW). We wish to thank Z. Smith, R.
Zwickl, S. M. Han, S. W. Kahler, T. G. Forbes, J. A. Klimchuk, and D.J.
McComas, for their help and advice.

6. REFERENCES

Burlaga, L. F. (1989), in E. Marsch and R. Schwenn (eds.), Phygics of
the Inner Heliosphere, D. Reidel Publ. Co., Dordrecht, in press.

Detman, T. R., Dryer, M., Yeh, T., Han, S. M., Wu, S. T., and McCo-
mas, D. J. (1990), in preparation.

Dryer, M. (1982), Space Sci. Rev., 33, 233.

Dryer, M., Detman, T. R., Wu, S. T., and Han, S. M. (1989), Adv.
Space Res., 9(4), 75.

Dryer, M., Smith Z, K., and Wu, S. T. (1988), Astrophvs., 3Suace Sci.,
144, 407-425.

Dryer, M., and Wu, S. T. (1985), J. Geonhys, Res., 90, 559.

Dryer, M., Wu, S. T., and Gislason, G. (1983), in M. Neugebauer
(ed.), Proceedings of the Fifth Interpnational Solar Wind Confer-
ence, NASA Conference Publ. No. 2280, p. 735.

Gold, T. (1959), J, Geophys. Res., 64, 1665.

Gosling, J. T. (1989), in C. T. Russell (ed.), Physics of Magnetic
Flyx Ropes, Amer. Geophys. Union Monograph, in press.

Han, S. M., Wu, S. T., and Dryer, M. (1988), Computers & Fluids, 16,
82.

Hewish, A. (1988), Solar Phyvs., 116, 195.

Hewish, A., and Bravo, S. (1986), Solar Phvs,, 106, 185.

Hewish, A., and Duffett-3mith, P. J. (1987), Planet. Space Sci., 35,
487.

Howard, R. A., Sheeley, N. R., Jr., Michels, D. J., and Koomen, M. J.
(1985), J, Ceophys, Res., 90, 8173.

Klimchuk, J.A. (1989), in K. Phillips (ed.), Proceedings of the Ther-
mal-Nonthermal Flares Workshop II, Rutherford-Appleton Laboratory
Report, RAL-89-102, Didcot, U.K., pp. 1-6 to 1-8.

Munro, R. H., and Sime, D. G. (1985), Solar pPhvs., 97, 191.

Tappin, S. M., Dryer, M., Han, S. M., and Wu, S. T. (1988), Planet.
Space Sci,, 36, 1155.

Webb, D. F., and Hundhausen, A. J. (1987), Solar Phys., 108, 383-401.
Wu, S. T., Song, M. T., Martens, P., and Dryer, M. (1990), in prepa-
ration.

Wu, S. T., Wang, S., Wang, A. H., and Dryer, M. (1088), Adv. Space
Res., 8(11), 221-228.

223




DISCUSSION

FORBES: Was the initial state in your sheared arcade example potential or force-free? If
$0, it seems to me that your result completely contradicts the work of J. J. Aly which shows
that such a disruption, which opens the field, by shearing should be impossible.

DRYER: The initial state is, indeed, a potential force-free magnetic arcade. When the
footpoints are moved, they are moved rather rapidly. For example, the lowest beta case (8
= (.06) had a peak shearing velocity of 15 km/sec. Consequently, the system quickly
evolves into a non-force-free system with pressure gradients. Thus, the force-free results
of Aly do not apply. Also, the instability only results in a rapid expansion of loops and
locally fast mass flows after the mean Alfvén speed is exceeded. This instability,
moreover, does not necessarily open the magnetic field. You will recall that there is no
resistivity in this model, nor are tiiere any anti-directed fields where numerical reconnection
could, in principle, take place. Thus, this model does not address the question of field-line-
opening.

KUNDU: Iam a little confused by your referring to flares as the cause of IPS-producing
shocks rather than high-speed streams from coronal holes, which Tony Hewish believes.
Since you showed Hewish's data, when you talked about IP shocks, I would like to know

what the present status is with regard to flares versus coronal holes as the cause of IP
shocks.

DRYER: Our use of Hewish's IPS data is decoupled from his interpretation that high
speed streams from coronal holes are responsible for geomagnetic storms. If a transiently-
developing coronal hole suddenly (sdy, on a few-hour time scale) develops, a stiock couid
certainly deveiop. I have a constructive and friendly disagreement with Tony who believes
that flares are peripheral events vis-d-vis geomagnetic storms. I believe otherwise. You
will recall that IPS data contains no information about the IMF (which, if southerly-directed,
is important for storm triggering); hence my comment above about decoupling. Of course,
even a steady-state hole could develop a shock that develops in the corotating frame. My
point is that any temporal and/or spatial solar inhomogeneity (c.f., flare, eruptive
prominence, or hole) could produce a shock. Hewish's point, however, about a transient
event, followed by a long-lasting energy output (be it a flare or whatever) is an important
point that is worth investigation. To this purpose, Zdenka Smith and I have recently
completed a 2D MHD parametric study that is relevant to this point. A final point is worth
making: there are no observables of erupting streams from coronal holes. Transient
coronal hole area changes are not sufficient, in my opinion, to claim that a shock will
propagate from such an event. The case for flares is well-established.

SWARUP: How does the intensity of shocks vary with solar distance in your models?

DRYER: When the temporal duration of an input pulse is short, say less than a few hours,
the strongest part of the shock will decay similarly to a classical blast wave with shock
speed ~R~1/2 where R is the heliocentric radius. If the energy input is long-lasting, say
some 5-15 hours (as suggested by long duration X-ray flares) the shock could move out at a
constant velocity (i.e., as a piston-driven shock) for some tenths of an AU before
decelerating as noted above in the frame of the background, moving solar wind.

PRIEST: (i) Is the plasma beta much smaller than unity in magnetic clouds and in your
magnetic bubble?
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(ii) If?so, why should the plasma density changes be directly prc jortional to the initial
density’

DRYER: (i) Your first question relates to our "magnetic bubble" Jumerical experiment.
We were interested in examining the dynamics of a particular configuration and the response
(cf., field draping) of the ambient solar wind and its interplanetary magnetic field to its
projectile-like motion. Although we were not interested at this expioratory stage to make
any comparisons with spacecraft-observed "magnetic clouds” the particular choice of the
parameters (n,T,B,) within our input bubble produced plasma betas greater than unity. We
would expect that other, judiciously-chosen, parameter combination: could produce betas
less than one - as found in the observations. It is not clear, incident.ily that the latter are
bubbles - or whether they are gigantic loops with both ends rooted in the Sun.

(ii) The density fluctuations that give rise to IPS are experimentally rorrelated with in siru

density measurements by Tappin (1986) and more rigorously, recently, by Zwickl et al
(AGU abstract,1988).

UBEROI: In your analogy of magnetic bubble to Hill's vortex did you take care of the fact
that some conservation theorems valid for vortices do not hold good for MHD theory?

DRYER: Thank you for bringing this possibility to my attention. No, we did not take this
point into consideration.
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ABSTRACT

A three-dimensional, time-dependent magnetohydrodynamic (MHD) model is presented for the study of
coronal dynaoucs. The model. written in spherical coordinates, extends from the solar surface (1R,, where
1R, = 6.95 x 10°> km) to 15 R,. This model was developed with two major 1ssues i mund. namely
for interpretation of various steady state and evolutionary dynamical structures in the corona. In order to
achieve tnese objectives we have employed two different numerical techniques to seek solutions for these two
different. but related, probiems: steady state structures and evolutionary structures. These two numerical
techniques are: (i) relaxation technique for steady state structures; and (i) FICE (Full-Implicit-Continuous-
Eulerian) techmque for evoiutionary structures.

lollustrate tius model, we present numerical results for examples of both the steady state and evolutionary
structure of the corona. These results show the additional physical features which cannot be shown by a
two-dimensional model. Finally, on the basis of the exploratory caiculation, we outline some interesting
physical features which can be considered for the observing programs of future space missions such as
SOHO. OSL. CORONAS, etc.

[. INTRODUCTION

Since the Skylab-ATM experiments in the seventies, we have recognized that the corona is in a transient
state in contrast to the previous understanding whereby the corona i1s always in a quiet orderly state
(Billings, 19661. It is also further realized that the relationship between the flare and the coronal mass
ejection 15 not as consistently intimate as originally thought ( Hildner et al. 1976). In order to understand
the physics of this fascinating phenomena of so-called "coronal transients”. a number of theoretical models
has been presented in the literature (Hundhausen et al. 1984). All of these theoretical models are based on
magnetohydrodynamic theory. The methodology used to treat these theoretical models could be classified
into two categories: (i) analytical methods and (ii) numerical methods. Those models treated by anaiytical
methods have to conform to certain strict conditions 1n which a full description of nonlinear dynramical
behavior 1s difficult to achieve: nevertheless. the solutions are exact. On the other hand. the models treated
by numerical methods could obtain global descriptions of nonlinear dynamucs. but these descriptions are
oot unambiguous and may mislead the physical interpretations. A further iimitation to these two categones
is the fact that all of these models are confined to a two-dimensional geometry. Thus. it is inevitable that
some arguments 1n the 1nterpretation of observations have taken place.

In this paper. we present a newly developed three-dimensional. time-dependent. magnetohydrodynamc
model for an extended corona. We will suggest that this model could be used to understand the physical
processes from tne companson of this model's resuits with observational data. The thec eucal description
of the model oresents the basis for the addition of dissipative mathematical terms that could be used
to understand additional physical processes from specific observational data. The theoretical descripuion
of the model are included in Section II. The numernical resuits are presented in Section III. Finaliv. the
concluding remarks are inciuded 1n Section [V

II. ANALYSES
Mathemaucai Model
In this study. we have assumed that the solar atmosphere behaves as a single fluid with negligible dissipative

effects. With these assumptions, the time-dependent magnetohydrodynamic | MHD) equations that descnibe
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atmospheric flows in three-dimensions for a spherical coordinate system can be written as follows:
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where the dependent variables are the density p, temperature T, velocity (v,, vs, v4), and magnetic field
(Br. Bo. Bs). The independent vanables are the radius =, the meridional angle # and azmithal angle o as
well at time "t". The constants are the polytropic index v, solar total mass M auc gravitational constant
G. In addition. the standard equation of state 1p = pRT) was used to obtain the above set of governing
equations.

The regron. withun which we will present the numencal solution to the above set of govermng equations. 15
shown n Figure 1. This region is bounded by the solar surface and 15 solar radu (&,) in radial distance.
by the equator and the poie 1n mendional distance (8-coordinate). and by azimuthal extent {o-coordinate)
of 45°.

Method of Solution

The equations are solved numencally using a modsfied FICE (Full-Implicit-Continuous-Eulerian) scheme
which 1s based on the orizinal FICE scheme developed by Hu and Wu (1984): and Wu and Wang (1987}
The grid spacings used are or = R,(1 ~ é6)'"*, and 98 = o = 4.5°. It should be noted that the radial
spacing 1s not umform and is chosen so as to: (1} assure the initial state as being in isothermal and
hydrostatic equitbrium { Wang et al. 1982): (2) initialization of the computation procedure: and (3) to
ensure numertcai accuracy. The time step can be arbitraniy chosen because of the flexibility of the FICE
scheme.
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Fig. 1. A schematic description of the portion of a three- dimensional configuration in which the solution
is calculated. Note that the computational domain extends from the pole to the equator within a

45° extent of heliolongitude. In the prescnt paper, symimetry is assumed below the solar equatorial
plane

Injtial State and Bou: onditions

In order to seek a solution of this problem. we need to specify the initial conditions. These initial conditions

include the magnetic field configuration, velocity field and corresponding thermodynamic properties of the
plasma.

The boundary cqnditions are rather complicated. hence a detailed account of the derivation of the boundary

conditions wiil be presented later {Wang and Wu. 1990). We shall only briefly descnbe these boundary

conditions here. There are a total of six sides in which the boundary conditions need to be specfied: they

are:

(1) » = R,, eight compaubility conditions are obtained from the set of governing equations (Wu and
Wang, 1987);

(2) r = 15R,, non-reflecting boundary conditions are used (Hu and Wu, 1984);

(3) 8 = 0 (pole) and & = 90° (equator), symmetric conditions are chosen because of the chosen field
configuration:

(4) =0 and o = 45°, the boundary conditions are obtained by extrapolation techniques.

I[II. NUMERICAL RESULTS

In order to carry out this simulation. we first introduced an initial state at isothermal and hydrostatic
equulibrium with v = 1.67 together mith a potenual field in one case and. in a separate case. a linear force-
free magnetic field topoiogy. These two separate cases were mntroduced into the set of governing equations
n order to ensure that the isothermal and hydrostatic equilibrium does exist. We then introduced a
steady-state. Parker-type, velocity field. The numencal solution of this mathematical system led to a
magnetohydrodynamic equilibrium state via the relaxation techmque. This MHD equiibnum state is
then taken as the simulated undisturbed coronal (i.e.. quet corona) with an outflowing solar wind around
multiple helmet magnetic topologies.

The imtial plasma and fields (magnetic and velocity) parameters incorporated in this simulation are the

{ollowing representative conditions of a non-rotating sun with an initial plasma d,(= 16mn,k,T,,/ B?) being
unity. at r = R,, § = 90° and o = 22.5°.
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o [sothermal and hydrostatic equilibrium atmosphere.
To =10° K R
po = pexp(( g ~ 1 FH)

3

where o is the density (the value of 1.67 x 167!® gm cm™ is used in this study and go is the gravity on

the solar surface.

¢ Magnetic field configuration
(1) A hexapole potential field (Jackson, 1962); and, in a separate calculation,
(ii) A hexapole linear force-free field (Nakagawa et al ., 1978)

o Velocity Field
ve(l, 0, ¢) = 15 km ™!,
ve(15, 68, ¢) = 200 km s~2,
ve(ry 8. 8) = vy(r, 8, ) = 0.

Figure 2 shows the simulated morphology of the quiet corona which consists of a three-dimensional repre-
sentation of the brightness { integrated density along the path of the line-of-sight ), steady state soiar wind
velocity vectors and magnetic field for two cases: (a) initially potential field topology; and (b) initially linear
force-free field topology, respectively. It is easy to recognize that the shape of the quiet corona depends on
the initial magnetic field topology. The bright corona is related to the ciosed magnetic field configuration.
and the dark region corresponds to the open field configuration which corresponds to the out- flowing solar
wind from the coronal hole. Also it shows that the solar wind velocity is almost radial.

Fig. 2. The three-dimensional simulated brightness. steady state solar wind velocity vectors and magnetic
field of the confined plasma corona for: (a) initially potential field configuration (upper left panel)
and (b) initially linear force-free field configuration (upper nght panel).

[n order to examune the physical structure of the quiet. steady-state. corona. we plot the radial distribution
of the density and temperature at the pole and equator for the imtially potential and linear force- free
magnetic field topologies. respectively. as shown in Figure 3. The radial distribution of the three veloaity
components {1.c.. t.. Ug. Uy} at the pole and equator 1s shown 1 Figure 4 for both types of magnetic field
topology. Finaily. we plot the radial distnibution of Alfven and sonic speed .t the pole and equator in
Figure 5.
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potential field configuration and (b) intially linear force-free field configuration.

Companson of each of these parameters demonstrates the well-known inference and important fact that
the magnetic field is the domnant factor that determunes both the morphology and physical structure of
the corona. The spanial diversity of these important. fundamental steady-state parameters 13 abvious.

For the completeness of this presentation. we shall show some resuits for a disturbed corona in Figure 6.
This numertcal result is obtamed by introduang a pressure pulse (p/p, = 10) distributed over three gnd
points centered at § = 35°, 6 = 22.5° and 7 = R, for the case of the initially linear force-free magnetic field
topology of the quiet corona as shown n Figure 2b. In Figure 6. at ¢t =600 s, we show simulated bnightness
(i.e. line-of-sight integrated density enhancement), disturbed magnetic field and solar wind velocity vectors
in the © = 22° plane. According to the results shown. we may interpret that the brightness was caused by
the flow interaction with the magnetic field. This density enhancement consists of both the mass carned
by plasma flow motion and local wave compression.

IV. CONCLUDING REMARKS

In this study, we have presented a newly-developed. three-dimensional. time-dependent magnetohydrody-
namic model for the study of corona structures in both quet and disturbed states. This mode] extends
from the solar surface to 15 R, and. thereby, includes the region of outflowing solar wind from the subsonic.
sub-Alfvenuc to super-sonic and super-Alfvenic regions. Therefore, we assert that it is. indeed. a model
which could be used to study coronalsinterpianetary coupling problems.

In these preliminary results. we clearly recognize that the magnetic field topology and strength controls
both the structures and physical parameters’ morphology of the corona. Also. thus model has the capability
to convert the fundamental physical parameters ti.e. p, T, v) to observables such as brightness (see Fig. 2)
and doppler shifts (not shown). Therefore. we may claim that thus model has the potential whereby 1t could
be used as a diagnostic tool that can be applied to the interpretation and gwdance of the observations. For
exampie. we may use the physical properties obtained from this model to compute Line profiles. As a final
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Fig. 6. The three-dimensional simulated brightness, magnetic field and solar wind velocity of a disturbed
corona at 600 s after introduction of a pressure pulse (simulated flare) at solar surface of the
quiet corona given in Figure 2b, (a) Viewed from § = 50°,¢ = —-20°, and (b). viewed from
8 =50°,¢ = 10°,

remark. we recognize that the development of this model is far from complete. The improvements can be
tackled 1n two major catagories as follows:

¢ Mathematical Improvement

We should establish the accuracy of the numencal resuits. In order to achieve thus purpose. we
should conduct a gnd size test for this model.

¢ Physical Improvement

Presently, the model includes dissipative mechamsms that were not invoked for the present demon-
stration of its three-dimensional. temporal capabilitv. Namely, the present model results are based
on “ideal” MHD theory. We reaiize that dissipative MHD is important to many solar physics
problems in which finite electrical conductivity, thermal conductivity, radiation and turbulence
are undoubtedly present. We plan to incorporate these effects in our model via a conservative and
rational step-by.step approach. However. the current ideal MHD model. because of its inherent
and natural three-dimensional resemblance to the real world. is essential for the construction of
solutions which resemble observed realistic topologies. We have obtained 1n the present demon-
stration. for exampie. inauced menaionai and aximuthal flows which exisung two-dimenstonai

models cannot provide.
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VI. FUNDAMENTAL METHODS FOR THE MODELING OFf SOLAR INTERPLANETARY
ENVIRONMENT

In order to obtain numerical solutions for tliese highly complex non-
linear mathematical models, for the physical system encountered, innovative
numerical techniques are called for. We have successfully developed a new
numerical method to deal with mathematically illed-posed problems of
extrapolation of magnetic field configurations using observations. This
method is called Progress Extension Method (PEM; Wu, et al. 1990, Astrophys.
J) and is included in this section. A total of four papers concerning
numerical methods were published ind are included in this section.

Magnetohydrodynamic (MHD) Modeling of Solar Active
Phenomena via Numerical Methods, in Developments in
Theoretical and Applied Mechanics, S. Y. Wang, R. M.
Hackett, S. L. Deleuw and S. Am. Smith (eds), 62-70, 1988.
Application of Simulitude Principle to the Numerical
Simulation of Solar Atmospheric Dynamics in J. Adv. Space
Res.. Vol. 8, Number 11, 221-226, 1988. -

On the Numerical Computation of Non-linear Force-free

Magnetic Fields, in Astrophys. J., Vol. 362, 698-708,
1990.

A Comparison Between Progressive Extension Method (PEM)
and Iterative Method (IM) for Magnetic Feild
Extrapolations in the Solar Atmosphere in J. of the
Italian Astronomical Soc., Vol. 61, No. 2, 477-484, 1990.
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ABSTRACT

Numerical simulation has become a tool for the investigation of detailed physical
structures of solar atmospheric dynamics. This tool has become an essential part of
solar physics because the complexity of nonlinear characteristics of much solar
phenomena renders the achievement of analytical solutions to be difficult to obtain.
Although computer technology and numerical methods have made significant progress in
recent years, realistic simulation for some prototype physical systems (for exanmple:
the birth and decay of an active region) still is not possible because of the wide
range of spatial and time scales that must be considered. Therefore, proper scaling
mles must be recognized for the aeveiopment of appropriate models. In thie paper,
we shall apply the similitude principle to develop these scaling rules for problems
of solar atmospheric dynamics. It is found that these rules are highly dependent on
the physical nature of the specific problem under consideration. A set of
"similitude critiques" is presented for some specific physical conditions.

Numerical examples of coronal dynamic response and active region dynamics are used to
demonstrate these new ideas.

INTRODUCTION

Dimensional analysis and similitude principles (Kalikhman, /2/) have been widely
used in experimental physics and hydrodynamics, because these fundamental theories
enable us to study and gain the insight of physical relationships between laboratory
models and their full scale prototypes. Recently, highly sophisticated computing
capability has enabled theoreticians to study very complex nonlinear physical
systems which are beyond the reach of analytical methods. This approach has grown
quickly and has become a sub-discipline called "numerical simulation". In fact,
numerical simulation is, in ©reality, the theoretician's experiments.
Experimentalists build physical models in the laboratory with hardware. On the
other hand, theoreticians build models with computer codes. Despite the
availability of state-of-the-art supercomputers and advanced numerical methods, the
construction of numerical simulation models for realistic prototype experiments
still has encountered the following difficulties:

(1) limitations on memory capacity and computation speed for desired
resolution and accuracy of the physical system under investigation.
(ii) even without limitations on memory capacity and computation speeds, the
large number of significant computation operations will introduce
inherited truncation errors that will effect the accuracy of the

computation and, consequently, will prevent the realistic simulation of
the prototype.

It can be noted that these two conditions contradict each other. Therefore, it is
almost impossible to obtain ideally perfect simulation models, One may remedy this
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issue, firstly, by constructing a sfmulation model on the basis of the best
resolution and accuracy with optimum spatial grids and time steps (which may not be
exactly identical to the prototype) and then, secondly, using classical similitude

principles to scale the prototype with the simulation model and its physical
characteristics.

It has been established for a long time that the characteristics of the full-scale
prototype could be predicted by a small-scale model provided certain similitude
rules are followed. For example, the airplane designer tests scaled models in the
wind tunnel to determine the aerodynamic behaviour of the airplane that is expected
in actual atmospheric flight. Similarly, the naval architect tests new hull designs

in a towing basin by using a model with the same philosophy vis-aivis ocean-
traversing ships.

According to the similitude principle, in order to enable a model to simulate the
physical conditions of the prototype, the model system has to be geometrically,
kinematically, and dynamically similar to the prototype system. The derivations of
these physical characteristics will be presented in Section II. Numerical results
for solar coronal dynamics to substantiate these claims are included in Section III.
The final conclusions on the application of similitude principle to solar
atmospheric dynamics will be discussed in Section IV.

SIMILITUDE PARAMETERS

Let us consider an inviscid, compressible magnetohydrodynamic (MHD) flow of finite
electrical conductivity and thermal conductivity in a gravitational field. The
mathematical representation of this physical system results in a set of standard MHD
equations. The first step is to make this set of governing equations dimensionless
in order to obtain the similitude parameters. Through these dimensionless
procedures, we found the following similitude parameters:

L D B?
sts—, EUIS-—, S, = —
U ou? ou?
u? UL c, @
FFsE—, Rm=—, S, = —, (1)
GL A u?
S_ch S_Ke s_p
= ’ x = T d = — .
P u? Loy’ DR ©

where the symbols 7, L, U, D, p, 8, B, G, Aand K are the characteristic quantities for
the time, length, velocity, density, pressure, temperature, magnetic field,
gravitational field, electrical and thermal conductivity, respectively. Their
values are given by the boundary values or other constant values reflected in the
physical and mathematical nature of the problem to be investigated. The physical
significance of each of these dimensionless parameters given by Eg. (1) is very
clear. The reader will recognize that St, Eu, Fr and Rm are the Strouhal number,
Euler number, Froude number and magnetic Reynolds numbers, respectively, that are
described in many standard hydrodynamic and magnetohydrodynamics textbooks. The
other dimensionless parameters S,, S,, S, and S, represent the relative importance of
characteristic magnetic energy, characterlstlc internal energy, characteristic

enthalpy, and characteristic thermal flux relative to the kinetic energy,
respectively.

Based on the similitude principle (Kalikhman, /2/), the condition of similitude
characteristics must satisfy the geometric and physical similitudes. In other
words, the characteristic dimensionless parameters for the model and the prototype
must have the same values, respectively. According to the equality of these
similitude parameters, as described in Eg. (1), the scaling laws can be derived
between the model and prototype.

NUMERICAL TESTS OF SIMILITUDE PRINCIPLES FOR SOLAR ATMOSPHERIC DYNAMICS

In order to illustrate the potential applicability of this method to solar
atmospheric dynamic research, two examples are chosen for illustrat tion. These are
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the coronal mass ejection and mass ejedtion in an active region as discussed below.
Coronal Mass Eiection

In this demonstration, we employed a two-dimensional, time-dependent ideal
magnetchydrodynamic model /1,3/. In this ideal MHD model (i.e., infinite electric
conductivity and no thermal conduction and radiation effects) there are four
independent similitude "characteristic critiques”, namely, St, Eu, S,, and Fr
according to Egq. (1).

Based on similitude principle, it is necessary to keep these four independent
similitude characteristic critiques identical for both model and prototype in order
to have the appropriate physical similarity. Hence these are:

Ly L
St = . m ’
TpUp TuUn
Py Pn
Eu = g 2 !
D, U
o, DmUn
2 2 (2)
B _ By
Sp = — ~ B
D UZ 2
Y, D“‘Um
2 2
Up Up
Fr = —— = ,
GpLp Gply

where the subscripts "p" and "m" represent the quantitites associated with the
protctype and model, respectively. Asusual, it has been learned thac tne parameter
"plasma beta (8)" is the important parameter in the MHD numerical simulation, which
can be deduced by taking the ratio of Eu and S§,, such that

81‘Eu 8‘Kpm Sﬂpp
= " = 3 = Bp = Bm, (3)
Sp B B
n P

This implies that the characteristic B8 value for the prototype and model are
identical as expected.

Recently, Wang et al. /3/ and Wu et al. /5/ have numerically simulated the
characteristics of mass motion and wave propagation in the solar corona caused by a
radial mass ejection in neighborhood of the equator at the solar surface by using the
Full-Implicit Continuous Eulerian (FICE) scheme in spherical coordinates. For the
prototype, we use the followimg values to calculate the initial state: the coronal
temperature is taken to be 10° X, the plasma density at the equator on the solar
surface 1.67x 10" !¢ g + cm~3, and B is equal to 10 at this position. The computation
domain is taken tobe lr < r s 4xr~and 0 < 8 £ 90°, r,, is the radius of the sun (6.95x
10° xwm). After obtainifhg the imitial state, we introduce a radial mass ejection
upward in the latitudinal range, 83.25° < 8 £ 90°, on the solar surface. The ejection
velocirzy is distributed linearly with 6, and the maximum velocity is taken at 6 =90°.
Temporally, the velocity increases with time until t = 1000 s when it reaches a
prescribed maximum 100 km s~ ! at 90° and remains constant at that value until the end
of the computation. The total time-scale of computation is about 6000s. So, wemay

take the characteristic quantities of various physical parameters for the prototype
as the following:

Tp = 6000 sec, Lp 3rO,

U, = 100 km * s°!, D, = 1.67 X 10-%% g/cm?,

(4)
0,= 108 k, 2.76 x 10-% dyne cm"?,

o
L)
1

Gp= 0.271 knm s~ ?, B, = 0.26 Gauss.
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We have used the full implicit continuofis eulerian scheme in spherical coordinates,
as noted above, and the usual symmetrical boundary conditions at the pole and the
equator, as well as the physical boundary conditions at the bottom and the
computation boundary conditions at the top in the computation domain /1,3,4/.
According to Eq. (2), we are allowed to choose the characteristic quantitites of
various physical parameters for the model. For example we take

Ly = Ly, Dy = Dp, Uy = 2U,. (5)
Then, by using Eq. (4), we obtain the other characteristic quantities for the model

1
1m=;'rp, Pn = 4Pps 0p = 4 6, , (6)

Gn = 4Gy, By = 2B,, By = B,. (7)

It should be noted that this kind of physical phenomena contains the appropriate mass
motion and wave propagation. The characteristic velocity inEq. (5) is the velocity
of mass motion in order to simulate simultaneously the characteristics of mass motion
ind wave propagation in the model. Then, a characteristic quantity that describes
the wave propagation, namely the Alfven velocity, V,, must be considered.

From Eq. (4) ~ (7), we obtain

(Vadm = 2(Vy)yp (8)

For comparison, we present the computed results of relative density at t = 6000 s for
the prototype and at t = 3000 s for the mddel in Table 1.

TABLE 1 The Values of Relative Density* at o = 87.5° (1.066 < R ¢
(t = 6000 s for prototyps, t = 5000 s for model, Bp = B, = 10)

R(=r/ro) | 1.066 1.137 1.212 1.293 1.378 1.470 1.567

Prototypel l.123 1.198 0.848 0.415 0.257 0.179 0.107
Model 1.109 1.249 0.869 0.436 0.272 0.191 0.117

R | 1.671 1.782 1.900 2.025 2.160 2.300 2.455

Prototype 0.019 -0.073 -0.087 -0.023 0.050 0.125 0.200
Model .035 ~0.043 -0.042 0.014 0.078 0.143 0.210

R | 2.618 2.791 2.976 3.174 3.384 3.608 3.847

Prototype 0.277 0.352 0.422 0.352 0.169 0.025 0.000
Model 0.278 0.343 0.396 0.318 0.151 0.023 0.000

*Relative density = (D - D,)/D,

From Table 1, it can be shown that the radial profiles of relative density for the
model are in good agreement with the radial profiles of relative density for the
prototype at t = 6000 s. Note that a leading compression, followed by a rarefaction,
occurs in both cases. At other time steps the numerical results show the same
agreement. This result proves that the model reflects the actual physical
characteristics of the prototype in this example.

Mass Ejection in an Active Regicn

We consider another example of mass ejection in a small-scale region, Wuet al./4/
have investigated the problem of mass ejection from the photosphere (a "surge"
perturbation as contrasted to the above-discussed thermal pressure-pulse "flare"
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perturbations) and calculated the res'ponse of the surrounding solar atmosphere.

For the initial state of the prototype, the distributions of the magnetic field and
plasma density are:

{1x
B, = B, cos l— e %Y,
L
X
B, = B, sin ——J e~*Y, (9)
L
Y
...I — dy
o RT
p™ pg @ ’ /

where « = x/L, and By and B, are the horizontal and vertical components of magnetic
field, respectively. L, p,, B, are the characteristic quantities of the length
(spatial scale), reference plasmz density and magnetic field, respectively. We
introduce a vertical mass ejection upward at £ = 0 in the range, 5200 knm < x < 8000 knon
the y = 0 plane, with the ejection velocity distributed linearly with x and the
maximum taken at x = 8000 km. At the same time, the velocity increases with time
until t = 15 s when it reaches its maximum, 15 km 8™}, at x= 8000 km. The total time-
scale of computation is about 700 s. We used the FICE scheme in the Cartesian
coordinate system together with projected normal characteristics /1/. Then, the

characteristic quantities of various physical parameters for the prototype can be
taken as follows:

7, = 700 sec,

[
]

p = 1.6 % 10* xm,
u, = 15 km g™},

Dp, = 43.175 x 107!? g cm3

(10)
0= 5 x 10* K, Pp = 3.45 dyne cm™?
Gp = 0.271 kn 8%, B, = 5.59 Gauss
8P,
It may be shown that By = —_— = 1. In this example, we use a new
B

choice for the characteristic quantitites of the model. If we take
LP
Lp = ralt Dy = Dy, Uy = U, (11)

then, according to Eq. (2), we can obtain other characteristic quantities for the
model as follows:

Tp
T™w = '—2’ ¢+ Pon = Ppsr 8y = 0y, (12)
Gp = 2Gp, B, = By, By = By,
From Egs. (10) and (1l1), it can be shown

(Vx)n = (Vx)p (13)

in this case. For comparison, corresponding data at t =700 s and and x = 7200 kn for
the prototype, and at t = 350 s and x = 3600 km for the model, are given in Table 2.
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TABLE 2 The Values of Relative Density* (800 < y < 8000 km)
(By = B, = 1)

Yy (km) 800 1600 2400 3200 4000 4800 5600
Prototype ap/po 0.103 0.267 0.059 0.045 0.100 0.129 0.124

t =700 s | y(knm) 6400 7200 8000 8800 9600 10400 11200
x = 7200km! Ap/p, 0.114 0.104 0.044 0.083 0.029 0.060 0.028

y(km) | 12000 | 12800 | 13600 | 14400 | 15200 | 16000
ap/p, | 0.036 | 0.026 | 0.018 | 0.014 | 0.024 | 0.049

Model Y (km) 800 1600 2400 3200 4000 4800 5600
t =350 8 ap/pe 0.104 0.282 0.054 0.052 0.097 0.124 0.116

x = 3600km| y(km) 6400 7200 8000
ap/py | 0.116 | 0.096 | 0.049

*Here, ap/p, = (D=-Dg)/Dy.

From these results, we again noticed that the agreement between the prototype and
model is good but is not as satisfactory as the coronal mass ejection case. Thisis
probably because we have scaled both time and space which may cause additional

numerical errors. However, the qualitative behavior of physics i1s still
acceptable.

CONCLUDING REMARKS
In this study, we may conclude the following:

(1) Using proper similitude characteristic critiques, one set of model
calculations can be used to simulate a number of prototype calculaticns,
This implies that, when tne physical size of the prototype becomes too
large to handle, a small size of the model could be used to replace it. 1In
such a way, the computing time can be improved because of the fewer

required numerical operations which will also decrease the truncation
error.

(ii) The similitude principle may be considered to be a universal solution for

certain types of physical problems such as those in solar atmospheric
dynanics.
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ABSTRACT

An algorithm has been developed to extrapolate nonlinear force-free magnetic fields from the photosphere,
given the proper boundary conditions. In this paper we present the results of this work, describing the mathe-
matical formalism that was developed, the numerical techniques employed, and comments on the stability cri-
teria and accuracy developed for these numerical schemes. An analytical solution is used for a benchmark test;
the results show that the computational accuracy for the case of a nonlinear force-free magnetic field was on
the order of a few percent (<5%). Then we applied this newly developed scheme to analyze a solar vector
magnetogram, and the results were compared with the results deduced from the classical potential field
method. The comparison shows that additional physical features of the vector magnetogram were revealed in

the nonlinear force-free case.

Subject headings: hydromagnetics — Sun: chromosphere — Sun: corona — Sun: magnetic fields

1. INTRODUCTION

Observations have shown that physical conditions in the
solar atmosphere arc strongly controlled by solar magnetic
fields. The appearance of photospheric, chromospheric, and
cOronal structures, including active regions aud flares, scen in
Ha and in different lines in the ultraviolet and extreme ultra-
violet as well as in white-light observations, provides indica-
tions of the prevalent nature and importance of solar magnetic
fields. Consequently, to understand the physics of active
regions, the storage and release of flare energy, and the forma-
tion of hot plasma loops and mass ejections, it is imperative
that we understand and study the evolution of t.c Sun’s mag-
r-tic field. To achieve such a goal, the logical first step is to
« =k a realistic representation of the configuration of the solar
magnetic field from observations.

A number of efforts in modeling physical structures of the
magnetic fields and the storage and release of energy in flares
are based on linear, so-called constant-« force-free models of
magnetic fields (e.g., Nakabawa et al. 1971; Nakagawa and
Raadu 1972; Welleck and Nakagawa 1973). For example,
Tanaka and Nakagawa (1973) used this linear force-free model
to analyze the energy buildup for the 1972 August flare. More
recently, Schmahl et al. (1982) used a linear force-free model
together with solar magnetograph data, VLA microwave
maps, and X-ray spectroheliograms to study the evolution of
an active region's magnetic structure, a study that led to a
better understanding of the observed microwave structures.
The authors concluded that localized currents must have been
present m the low corona to account for the bright 6 cm
sources observed far from areas of strong sunspot fields. thus
suggesting the presence of nonlinear (non-constant-x) force-
free fields. Further evidence for the existence of nonlinear
force-free fields comes from the study of Krall er al. (1982), they
used a linear model to investigate the vector magnetic field
evolution within a flare-productive active region and con-
cluded that the constant-a force-free model could not ade-
quately represent the structures observed in the magnetic field
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of the active region. Previously, Levine (1976) has shown that
changes in the value and sign of « can occur within a single
active region. Recently, Gary et al (1987) have used observa-
tions of an active region (NOAA AR 2684 on 1980 September
23) to show nonlinear aspects of the magnetrc ficid. { he specific
investigation of the spatial distributions in the photosphere of
the vertical component of the electric currents has proved the
nonlinear nature of the force-free fields (Hagyard, West, and
Smith 1985; Moreton and Severny 1968).

The inadequacy of linear force-free models to represent
observed solar magnetic fields is demonstrated amply by these
studies. A compromise approach—constructing a * patchwork
quilt” representation of the field of an active region by combin-
ing fields derived from solutions of the linear equations of
different values of x—has no mathematical basis, as shown by
Gary (1989). Such an appro~ch is certainly inappropriate in
describing the evolution of magnetic fields when important
nonlinear physical processes such as energy storage and release
and magnetohydrodynamic (MHD) instabilities are involved.

In this paper a numerical scheme is presented for extrapo-
lating nonlinear force-free magnetic fields from a source
surface, i.e., from observed vector magnetic fields at the photo-
spheric level. This kind of approach was discussed in previous
works (Harvey 1967; Molodenski 1969; Nakagawa 1974), but
none of then is specifically for nonlinear force-free fields. It is
understood here that we deal with a Cauchy problem for a
system of elliptical partial differential equations, in which both
field values and their derivatives are specified at the plane
z = 0. Mathematically, this is an ill-posed problem with an
unstable solution tsee. e.g.. Morse and Feshbach 1953, p. 703).
However, ill-posed problems are encountered in many impor-
tant practical physical and technical situations (Courant and
Hilbert 1962) and are being solved by the so-called regulariza-
tion method (Tikhonov and Arsenin 1977). In the present stud,
we have developed an averaging procedure which represents 1
relatively simple smoothing of the derivatives; it enables us to
obtain an approximate solution with reasonable accuracy. The
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F16. 1 —Coordinate system and computational domain

The numerical algorthm presented in this paper 1s a
straightforward extrapolation procedure with specified bound-
ary conditions (where data can be used). The computational
procedures. differencing schemes. and criteria for numerical
stability are discussed in the following subsections.

a) Computational Procedures

We take as boundaries the six planes of the computationai
domain as shown in Figure 1. The values of the field on the
lower surface are assumed known at discrete points, e.g., from
measurements of the vector magnetic field at the photospheric
level. The computational procedure to be used 1s summarized
as follows.

1. At the lower surface (= = 0), the vector field (B,, B,, B.) is
prescribed at each grid point.

2. At this surface (i.e., - =0), the horizontal derivatives
B /éx. ¢B,/¢y. ¢B,/¢x.CB,/dy, 6B./¢x. {B./Cy are computed.

3. Using equation {2.9), the value of x over the plane 15
computed.

4. Using the results from steps 2 and 3. the vertical deriv-
atives are computed from equations (2.6).(2.7). and (2.8).

3. With the verucal denivative of Bix. y, 0) thus determined.
the tield Blx. v. dz)1s computed using an explicit extrapolation
scheme.

6. Repeating steps 2-5. the complete field configuration can
be determined subect to the boundary conditions. specified on
the other five surfaces.

h) The Nuinerical Differentuial Scheme

In order to compute these horizontal derivatives numern:-
cally, we used second-order central differences for the interior
pomnts (Burden 1981). the spectfic expressions are given in the
Appendix. For the computation of derivatives for points on the
boundaries. the central differences cannot be used: in these
ases. three-point forward (backward) formulae were used and
are given in the Appendix (Greenspan 1974). It is important to
note that no side boundary conditions are imposed. Equations
1A3)-{A8) 1n the Appendix are used to extrapolate the interior
tield to the side walls. This forms a Cauchyv problem to be
solved.

Finailv. to e¢xtrapoiate the tield components numericatly in
the c-direction using the denived vertical gradients. both
Euler's formula and the Adams-Bashforth two-step formula
were used. These formulae are also given 1n the Appendix.
Thus. the final numenical forms for the extrapolation of the
magneuc field for points interior to the domain are given by
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combining equations (2.6}-{2.9} with the finite-difference for-
mulae shown in the Appendix:

_ h.
(Bt)l.m.n-f-l = ‘Bt)l.m.n + T [(B:)l0 L.mn (B:)l- l.m.n]
+ (2B, mn s © (3.1)

- h,
(B.\)l.m.nvl = (B\')l.m.n + -,_,;- [(B:)l m*ln " 'B:)l.m- I.n]

- (an)l.m.n h: . (3 2)
~ h.
(B:)l.m.nv-l = (B:)l.m.n - 5—,;— [(Bx)l* l.ma ™ (Bx)l- l.m.n]
h,
- '?I [(B)tmern— (Btm-1.n1 > (3.3)
_ 1 (By)l*lmn-fl_‘B')l—lmn‘l
(I)I.In.n - (B:)l.m.nfl I: 2’1,‘
_ (Bx)l*l.m nol“— (Bv)l-l m.nvl:| . (34
2h,
where

(Bl)l.m.n = i[(Bl)l+l.m.n + ‘B,),_ .m.n
+ (Bi)l.nn' t.n + (Bl)l.m- l.n] . ‘35)

In cases where B. becomes so small that the computed value of
x becomes inaccurate. we simply replace x by . defined as

(&)l.m.n = %[(1)14- t.m.n + (’1),_ L.ma T (1)1_,,.4. l.n + kz)l.m- l.n] .

(3.6

These averaging formulae (%), ,, , and (B,), ,, , are used instead
of the values of (%), ,, and (B,); ., at the grid points as a
method for smoothing the data. The selection of the gnd
spaces 1s guided according to the numerical stability criteria
which are discussed in the next section.

¢) Computational Domain and Numerical Stability

In general, six planes form the surface (or limats) of the com-
putational domain. The values on the lower surface are deter-
mined from observational data: thus this surface 1s referred to
as the “source surface,” i.c.. the photosphere. Values on the
other surfaces are prescribed according to both physical and
mathematical continuity conditions.

In the paper we employ the following conditions for the
numerical stability analysis: assuming that (1) as z — ».
(B,. B,. B)—9, and (2) outside the rectangle given by
—da<x<d —h<y<bh periodic conditions are used
together with von Neumann's method (Mrtchell and Griffiths
1980). feads to the following conditions on ..

B, B,
E_:‘)"SE and -I}:()'S.% 127
B+ B? 1 B} + B ]
- 0, <= i 3.
R W 13.8)
where
h. h.
==, 9, == (3
O« h ST 9)
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mdathematcal tormansm of this method is presented in § 1. and
e numericai method and procedures are inciuded in & 1. In
+ TV, resuits trom 4 benchmark test case are given together with
an anabysis of the computational accuracy for this test case. To
~how the capability of this scheme. the data obtained from
observation were analyzed by this new techmque and com-
parea wath a classical potential field technique (Schmidt 1964).
Tlus comparison clearly shows that the nonumiform current
features that are present can be identuified with this new tech-
mque. Finally, conctuding remarks are presented iny V.

1. MATHEMATICAL MODEL

The basic equation describinyg a force-free magnetic ficld is
given by

Jx B=0 2.0

This may be rewntten with the aid of Amperes law (cgs clec-
tromagnetic units).

dnJ=VxB. 12.2)

Vx B=aB. 2.3

where J 1y the electric current density and x in generai s differ-
ent tor each neld hne. although 1t must be constant along a
wiven nield hine. This can be seen by taking the divergence of
equation (2.3} to obtain

B-Vx=10 (2.4)
by virture of the solenoidal condition
V‘B=0. (2.5)

If x =u. the tield 1s potential. that 1s. the lowest order
approximation for a description of realistic solar magnetic
tields Smce a potenual configuraton represents the lowest
state of energy of a given magnetic boundary condition. 1t 1s
Jefinitely not an appropriate description for magnetic fields 1n
wine regmons that produce tlares. If x has the same value
-hrougnout the tield domain. the resuiting subclass of force-free
tields 15 called a ~constant-x” or linear ticld. since the tield
components sausfy a hnear differential equation (Nakagawa
and Raadu 1972} We wiil consider the general class of ficlds
wnere x 1s a vanable.

In component form. equattons 12 3) and (2.51 form the basis
of a scheme to extrapoiate the force-tree field when the vector
magnetic tield on the boundary surface 1s known Some of the
prehminary results were presented by Wu, Chang, and
Hagvara (1985). We write the following equations using equa-
dons 12 a2 hoangi2 )

B B,
— =B - = 12.6)
(- o\
B.
oo o
- (A
"B B, B
s —~ = 128)
bl t\ !
HE 1 « B,
PR Al 29
B: ( N (43 ) ( )
1By D s
BeRUE) R e
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We take as the lower boundary surtace the plane - = 0 Then
cquation (2.9) indicates that knowing the vector field Blx, 3. )
aver this surface is sufficient to determine iocally the parameter
2x. 3, 0. In this way. we have ensured that the source surface 15
a self-consistent nonlinear force-free tield Then with x(x. v, O
and Bix. y. 0) specified. equations (2 6)+2.8) determine ¢B(x. ),
0 ¢z and thus allow the start of an integration upward with
herght = The process can then be repeated. beginming with the
determination of xfx. y. dz) from Bix. 1. dz). again through
equation (2.9). It shorid be noted that equation (2.10), derived
from equations (2.6)+2.9), provides an alternative method to
derive x(x. v, 2> 0). In places where B. goes to zero. for
example. along the "neutral line ™ in the photosphere (loci of
nuils in the line of sight (B.) component of the photospheric
field). or near the tops of magnetic loops higher in the atmo-
sphere. equation (2.9) cannot be used. In these instances, an
mterpolation along the field hine such as that given n equation
(3.6) is used to determine the value of x. This 1s based on the
assumption that all the field lines are continuous 1n the neigh-
borhood of a point. an assumption that has a physical and
mathematical basis. since the present formulation does not
include disstpative processes.

IIl. NUMERICAL METHODS

As showi by Grad (Grad and Rubin 1958: Grad 1985), the
differenuial equation for the force-free ticld problem 1s a mixed
type. having one nontrivial distinct real characteristic as in a
hyperbolic cquation. and two imaginary ones as in the case of
an elliptical equation. For the general nonlinear case this leads
to mathematical difficulties both in the specification of bound-
ary conditions and 1n the nature of the solutions. A number of
astrophysical examples (magnetostatic as well as force-free)
have been discussed by Low (19824) and by Lerche and Low
(1982), and they summarize the present status of several classes
of anaivtical solutions. Recently several attempts have been
made to devise algorithms for calculating nonlinear force-free
tields using observational boundary conditions (c.g., Sakura
1981: Pridmore-Brown 1981 Sakurar and Makita 1986. Yang,
Antiochos. ana Sturrock 1986: Zwingmann 1987). The tech-
mque developed by Pridmore-Brown (1981) requires the
Lorentz force to be mummized. The method of Zwingmann
{1987) and Yang. Antiochns. and Sturrock (1986) have only
heen applied to two-dimensional problems. On the other hand.
the method developed by Sakurai 11981) 1s a combination of
the superposition of a current tield on a potenual field and a
convergent iterative procedure. Pridmore-Brown’s method has
not been used with observational data. nor has it been tested
against general nonhnear analytical models. However, neither
Sakurars nor Pridmore-Brown s method 15 convenent to
apply to observational data. The present method s specthically
developed for data utihzation. Most recently, Aly (1988) has
investigated some theoretical aspects of the construction of the
nonhinear torce-tree magnetic tield from boundary data. He has
concluded that 1t 1s possible to construct ~uch a soiution with
PLOPET LotisiTdiiis, As a finai femara. it fids been hnown that
some verv usctul approximations do not become exact 1n any
known limit, | or exampte, the von Karman Tsien method for
airtoibs 1 subsomie flow (Liepman ana Puckett 1947). shock
expansion theory and 1ts extension to axissmmetrnic and three-
dimensional lows (Hayes and Probstein 19391, Spretter’s local
Iincarizatton in transonic low (Spreiter 1939) ete This kind ot
approximation has been classitied as the srrational approx-
mation by Van Dvke (1975 The present approximation tails
into this category
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These stability criteria guide us 1n choosing the preper gnd
spacings and extrapolauon step (h.). In practice. the periodic
boundary conditions are not used to determine the vaiues on
the side boundaries. but the linear extrapolation based on nte-
rior points was used.

IV. COMPUTATIONAL RESULTS

In order to demonstrate this algorithm. we have carried out
a numerical calculauon. using as a benchmark testing case a
form for the nonlinear force-free field that admits of an analyti-
cal solution. The form chosen was the analytical solution of
Low (1982b) that incorporates a distorted magnetic neutral
line and a highly sheared magneuc field in the vicimity of the
neutral line, both important clemencs in flare-productive active
regions (Hagyard. West. and Smith 1985: Hagyard. Moore.
and Emslie 1984). Low's solution is given by the following
equations:

08 &
B.=—=Bnzg o8 % 1.1
B = Buzolx - \',‘N“ LU o, - Bozglz = 2v) :"‘:,* =) no, . 42)
rR; R;
B = Byzolx + \':,l(: -~ ) cos @, + B, :0(_‘-2+ Vo) hor. 14
- rR; ;
where
R} = [y + yo) + (= +20)°]. (4.4)
Pt =+ vl U+ vl 1z 42907 (4.5)
6, =03InR . (4.6)
d 0.
dr r

B, 1s the magmtude of the magnetic field strength at the origin
(X0 Jo» =o), Where this origin is chosen to be located under the
source surface. The configuration of the field lines inside the
Jomain are determined by the position of :his origin refative to
the source surface. In the present study. the ongin (x,. 3¢. 29} 15
chosento be(x, = —iL,. vo = —~1L,,z, = L), and R is the
normalized formof r{R = r R,).

Using these formulae, we generated the values of the mag-
netic field on a finite source surface forming the boundary of
the domain of the calculation. The source surface numerical
values were used 1n our numerical algorithm to extrapoiate the
field above the source surface. Since the analytic solutions gave
the exact solutions for the field above the source surface. com-
parisons of our resutts with the analytic computations provid-
ed a stringent test of the algonthm. Figures 2-3 show the
resulting compansons between the numernicai and analvtic
solutions.

in Figure 2. contours ot the verucai field (the hne-of-sight
fietd tor areas near the center of the soiar disk) are shown in the
v-1 plane at two heights (z = constant) above the photosphere.
Normatized to the computational size of the square base
region at 2 = 0. the two levelsareat 2 =0 30 and = = ' O: with
4 base fength of ~ 107 km. these levels correspond to heights ot
SO.000 and 100000 Am. respectively. Since these are consider-
able heights up 1n the solar corona. comparnsons between the
numerical and analvucal tields at these heights represent eriti-
cal tests of the numernical method. As judged by the results
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FiG. 2.—Companson of analytical and numerical values for the 8, (hne of
sight) component of the magnetic field at two different heights {z = const.). The
solid and dashed curves represent postive and negative contours of the B,
component of the nonlinear force-free magnetic tield in the x-y planeatz = 0.5
(in the middle of the z-scale) and at = = 1 0 (at the top of the z-scale), where the
numbers indicate the strength of the magnetic field The numbers represent the
level of magnetic strength as follows: 3 —1000 G. 4 500 G. 5: =200 G,
6 0G,7.200G.8 500G.9 1000G

shown in Figure 2. they are 1n good agreement at both levels as
far as the strength of the vertical component of the magnetic
tield is concerned.

In Table | we present detailed quantitative comparisons for
z = 0.5(50.000 km). For selected grid points in the x-v plane of

5t
\‘\\\ 2=10
~——
E,? 4t ~w (By)
= Y
c N N
O \:\\ -
CI: r
o 3 \\ (8y) \
53]
S‘ b i
= 2 s '
< 82) |
w 1
joet 1F ‘.
1 2 3 4 5

N

T, v \verage percentage error between the analviicdl and numernica
wlutions as 4 function of the parameter © This parameter represents how
much of the domatn n the -1 prane s mcluded in the anaivas ot average
error o - 4 represents the il domain o - 1 indicates that the irst row

and column on all sides at the boundary ol the doman are omitted in the error
anglvsis, ele
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G, 4 —Three-dimenstonal representation of the nonitnear force-free mag-
netic teld . ta) anaivtical solution and 1h) numencal solution. where L, and L,
respectively represent tne tield hine The same footpoint is vbtained by the
anaivtical solution and the numerical solution

23 < 33 gnd ponts. the table gives the analytic and computed

alues for ail three tield components and for the force-iree
parameter x. From data such as those 1n Table I. we have
calculated the mean square percentage errors in the field com-
ponents at different heights as a function of the parameter o.
which 1s the number of rows and columns next to the boundary
surfaces 1n the x-v plane that arc omitted from the error
analysis. In Figure 3 these percentage errors are plotted against
the parameter o for the level = = 1 0. For the case of ¢ = 0. that
15. 1f all gnd pomts i the domain are included n the error
analysis. the basic quantitattve result 1s very obvious: at all
neight levels. including the highest. the computed solution
agrees with the analytc solution to better than 5" in all field
components. and the typical error is only 3", However. the
error of the z-value will be greater because x 1s computed from
*he gradients ot the magnetic tield and divided by B_. Figure 3
a0 demonstrates that the worst errors tend to oceur near the
boundaries. since all errors at = = 10 tend to decrease as the
arid points near the boundary are omutted n the error calcu-
lation, This result indicates the obvious resuit that in computa-
tions using observational data some care must be excraised 1n
analvzing the data near the boundaries Because the exact
nature ot the tield outside the regon 15 not avaijable for use in
the computation. the etfects on the solution due to this outside
region couid not be accounted for

Figure 4 shows the three-dimensional representation of the
magneuc field lines obtained from analytical solution and
numerical code. respecuvely. Agamn. by comparison of these
two cases, we note that for the lower field lines (ie., below
20.000 km) these two cases are almost identical. but the higher
field lines do show some small differences. for example, the
differences between field line L, and L,. These lines originate
near the boundary; hence they are expected to show numerical
differences. However. we are reminded. 1n general. that there
are two steps that introduce numerical errors: (1) the extrapo-
lation procedures and (2} the graphics procedure. With these
two sources. the differences between analytical and numerical
solutions are as small as shown. which indicates that we are
able to establish a numencal procedure for extrapolation of the
field.

Since we have shown that the numerical scheme 1s an accept-
able one in comparison with an analytical solution, we shall
now apply this scheme for real data analysis. Since observa-
tional errors may introduce spurtous numerical res.lts, this
data set will test the numerical stability to nomdeal data. For
this purpose. we have chosen the near disk center (1980 Sep-
tember 15) active region AR 2665 observed by the Marshall
Space Flight Center vector magnetograph for analysis. Figure
5 shows the observed B. contours and transverse vector fields
{i.e. B, and B,) at the photospheric level which will be used as
the surface information for the numerical extrapolation of nor:-
linear (1.e.. non—constant-x) force-free field lines. Physically this
means that the intensity of ihe current density at each foot-
point is different according to the observed value.

Figure 6a shows the three-dimensional configuration of the
field lines of this active region based on this newly developed
nonlinear torce-free model. and Figure 6¢ shows the three-
dimensional configuration of the field lines of the same active
region found with a potential field model (Schmidt 1964). In
addition, we have shown the top view of these two cases In
Figures 6th and 6d. respectively In comparing these two cases.

~»
N A

- —

t
1
'
i

Fio 5 Observed B contours and transverse veetor tieids e . B, and 8)
on 1980 September 13 (AR 2665) at photospnenie fevel t1e, = - ), where
VS2000 GO B 00 Goe S0 GODosoo Ge R =250 GoEoo
(9] W0GH MOGE - - 10006
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(c) (d)

I 6 —a) Numencal extrapolated three-dimensional magnetic field line using preseat nonlinear force-free magnetic field code based on the data givenin Fig. .
thi Same structure as in 1a) as viewed from the top () Numencal extrapolated three-dimensiunal magnetic ticld lines using potential magneuc ticld model {Schmidt
1964) based on the data given1n Fig 5 (d) Same structure as in () as viewed from top

we note that the topology of two magnetic field lines exhibits
considerable differences. No shear feature appeared in the

resentation. For example. let us examine the ticld hine contigu-
ration for these two cases. In the case of the nonlinear

~otential field representation. which 15 what 15 expected
hecause the potential field model is a current-free model. Thus.
there 1s much less structure exhibited 1n the potential field
representatton as compared with the nontinear force-free rep-

force-free ficld representation as shown in Figure 6a. the tield
lines are highly twisted topologicaily 1n the penumbral region
as well as in the umbra. where field hines are open. Also. we
observe from the calculation based on the analytical solution
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Fo 7 Sumencal computed nonlinear force-free tield contiguration projected on the -z plane. based on AR 2665. 1980 September 8 where A, B. and (

adicate the locations vl core, umbrae, and penumbrae respectisels  The other swmbols indicate the tield strength D —~ SO0 G - 250G -0 GUG - 250G,
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that every loop has a different shear. which represents a ditfer-
ent current intensity. Now some attention must be given to the
extrapolated field configuration as shown in Figure 6a. It s
obviously difficult to comment on the accuracy of this repre-
sentation because there 1s no analytical solution or other refer-
ence which we can use for comparison. However, some
theoretical assessments can be made:
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1. In Figure 7 we have plotted the extrapolated field con-
tiguration shown 1n Figure 6u projected on the x-z plane. It is
clearly indicated 1n this figure that the general characteristics of
this extrapolate solution exhibit charactenstics of a sunspot
such as the core. umbrae, and penumbrae (marked by A, B. and
Cin Fig. 7).

2. The shaded region represents the region of realistic solu-

259
——h
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o

tio. ¥ Companson of Schmudt's method i(a] and {d]) and the present methods for x - 0 The lett hand panel represenes the side view ot the extranolation of
the observed magnetie tield (AR 2665, 1980 September 153, and the right-hand panei represen’s the top view of the extrapotation ol the observed magnetic tield ()
and tdh are obtained by Schmidt's method. th) and te) are obtained by the present method with tall height of the computation domam and i and () are obtamed by
the present method wath half the heignt of the computation domarn
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tion. Bevond this region. the numerical procedure diverges
{rom a realistic solution, 4s can be seen by the convergence of
the tield hines This effect could be credited to the averaging
procedure 1n our numerical calculation (see eq. [3.6]) and the
range extended bevond our regularization process in addition
to the fimite magnetogram. However. this effect does not
Jappear when we run the analytical tests because the analytical
solutton which we have chosen has regular analytical contin-
uous behavior.

3. To assess the region of convergence further. we have
employed the present numencal method to compute the poten-
tial field (1e.. x = 0) configuration using the very same data
presented 1n Figure 5 in comparison with Schmidt's method
(1964). The procedure for carrying out this comparison s to
input the potential field at the z = 0 level from the observed
data of 1980 September 15 (AR 2665) into the present numer:-

) Filedts of the boundary on the numerical results af vanous herents
N2 078 [y

o
|9 ]
w1
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cal algorithm by setting x =10 The results are compared 1n
Figure 8. In Figure 8 we have shown the front view of the tield
lines ()-z plane) computed by Schmuidt's method (Fig. 8a) and
by the present method (Figs. 86 and 8¢} on the left-hand side,
and the corresponding results of the top view (x-y plane), re..
Figures 84-8f, on the nght. From these results. we observed
that those lines limited to half the height ot the computations
domain, which corresponds to a 45 cut {1e. ~tan ' (hh.)].
are almost identical to those given by Schrmdt's method. This
15 indeed consistent with the results we have shown in Figure 7
in describing the region of convergence.

To examine the effects of the boundaries. we use the same
observed field but “ move " the sunspot toward the boundary
and extrapolate the nonhinear force-free held to different
heights as shown in Figure 9 From these results. we note that

=3

Ly
A

b 10 Comparnon of the three-dimensional magnetic ftield confiey- ;
rations extrapolated from 1) the anaivtical data tegs [4 1] {4 5] th the i
analytical data with random perturbation using 4 one-step smoothing process
and t) the anatvtical data with random perturbation using a4 two-step smooth-
mprowess  The one-step and two-step smoothing processes represent using o+
lour-point average as shown meg (3 5 once and twice, respectively
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the basic features o1 the sunspot are identical for both cases.
However. at higher heights, sigmficant differences on the
neutral ling, are seen. This is consistent with our previous
comments. the accuracy of this procedure deteriorates when
the solution is close to a boundary. It 1s important to note that
since B+ Vx =1, a twisted field leads to localized currents
which will remain localized as seen in Figure 6a.

\s 4 hnal assessment of this newly developed method. we
sould Iike to show that this method 1s indeed stable with
respect to the random noise. In order to achieve this point. we
have introducec a random perturbation 1n the data generated
by Low’s analyucal solution at the surface (egs. [4.1]-[4 3]).
The random perturbations were introduced at an amplitude of
10" for the transverse field (1c.. B, and B,) and 1", for the
line-oi-sight field (1.e.. B.). These results are shown 1n Figure 10
Figure 10u shows the results without introducing the random
perturbation. Figure 10b shows the results with random per-
turbation with a one-step smoothing process. and the results
with random perturbation together with a two-step smoothing
process are presented in Figure 10c. By comparison of these
results. we clearly noted that the results with two-step smooth-
'ng are converging to the true solution. Thus we may claim
that the present method is a stable one with random noise
perturbation.

v CONCLUDING REMARKS

In this paper we have presented numerical solutions for non-
linear force-tree magnetic fields above a source surface. These
numencal solutions are based on a numerical scheme which
enables us to obtain nonlinear force-free solutions by extrapo-
lation from a given surface. This newty developed algonthm
was tested by using an analytical solution to the nonhnear
force-free field equations, the test showed that. with the present
numernical scheme. nonlinear force-free magne.ic fields can be
entrapolated to an accuracy of better than 5. in companison
with the anaiytical case 1n a defined region. 1.e region of con-

FORCE-FREE MAGNETIC FIELDS

vergence. In addition. a numernical example based on the obser-
vational data was also presented to test the capability of this
numerical nonhnear force-free model As has been pointed out
by a number of authors (Grad 1973. Kress 1977, 1978). the
complete mathematicai charactenization of the nonlinear force-
free problem has not yet been achieved Accordingly. we do not
claim to have solved the nonlinear force-free probiem. we have
merely presented a numenical algonthm that can be used for
extrapolation of the force-free solution to within a certain
accuracy. Nevertheless. because of the practical importance of
force-free tields 1in understanding the physics of the Sun. there
1s strong motivauon for devising a numerical approach that
will serve 1n the mtenm until a sausfactory mathematical
understanding 1s achieved. Therefore, it would be wise to note
some unresolved mathematical questions when applying this
numerical procedure for data analysis. (1) The accuracy dete-
riorates when the solution 1s close to the boundary. (2) The
uniqueness of the solution has vet to be established (however,
the preservation of the solution via vanous boundary values
has been demonstrated: see Fig. 9).

As of now. we have achieved this initial goal. the next step 1s
to apply this algorithm to 4 wide variety of actual observations
of vector magneuc fields to test the numencal code under
various condtions. e.g., for the magnetic tield 1n more complex
regions, and to expicre the region of convergence of the
numerical extrapolation. Also. the effect of noise 1n the obser-
vational data should be investigated.
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APPENDIX

PINITE-DIFFERENCE REPRESENTATION OF THE REQUIRED TERMS IN THE GOVERNING EQUATIONS
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ABSTRACT

In this paper we present a comparison between two numerical
methods for the extrapolation of nonlinear force~free magnetic
fields, viz. (i) the Iterative Method (IM) and (ii) the
Progressive Extension Method (PEM). The advantages and
disadvantages of these two methods are summarized and the
accuracy and numerical instability are discussed. On the basis

of this investigation, we claim that the two methods do resemble
each other qualitatavely.

I. INTRODUCTION

It 1s wellknown that the magnetic fields play a dominant
role in all physical features which appear in the solar
atmosphere:; for example, the observed filamentary structures in
the chromosphere seen in H, (Martin, 1980), and coronal loops
seen in UV (Cneng, et al. 1932) and X~-ravs {(antonucci et al. 1332:
de Jager et al. 1983). All these structures 1in the solar
atmosphere are generally considered to be aligned along the
magnetic field (Zirin, 1971; Poletto, et al., 1975).
Physically, these structures can be interpreted as plasma
confined by the magnetic field. Hence, a detailed and
guantitative analysis of these structures require a
quantitative knowledge of the magnetic field in the solar
atmosphere. Presently, measurements of magnetic fields are
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confined to the photospheric level; therefore, in higher levels
(i.e. chromosphere and corona) the magnetic field can only be
obtained through numerical extrapoclation using the measured
photospheric magnetic field as the source surface, as
demonstrated in the early work of Schmidt (1964), Altschuler and
Newkirk (1969), Nakagawa and Raadu (1972). All these early
extirapolation methods are restr.cted to che linear
approximation, which physically represents current-free field
(potential field) or constant current-to-magnetic field ratio
(linear force free field), It has been shown that these
representations are far from .ealistic in describing the

observed features in the solar atmosphere (Schmahl et al.,
1982).

In crder to improve our understanding of the physical
structures of the solar atmosphere it 1s necessary to have
quantitative knowledge of the magnetic field. Therefore, a
number of extraplation methods is developed to meet the demands.
The mathematical model using a force free configurationr on the
basis for the extrapolation of photospheric vector magnetograms
to obtain the coronal field has been given by Aly (1989) and Gary
(1990). In particular, Gary (1990) presented an excullent
summary and assessment on the present available extrapolation
methods from a "theoretical point of view. 7a this paper, a
comparison between the progressive extensio.. rethed (PEM) and
iterative method (IM) is presented. The rationale for choosing
these two extrapolation techniques for comparison is that they
are based on observed photospheric level fields and have
practical applications. Abrief descriptionof the theoretical
background cof these two techniques is presented in Sect:ion 2.
Numerical results of direct comparison are included 1in Section
3. The discussion of advantages and disadvantages of these two

techniques and their possible physical consequences are
presented in section 4.

II. THEORY AND TECHNIQUES

On the assumption of magnetohydrostatic equilibrium in the
solar atmosphere, the mathematical modei describing such an
eguilibrium state may be written as

-+ I xB=-p3=0, (1)

whare p is the hydrostatic pressure and will be represented by
the equation of state,

P = pRT , (2)
with p and T being the mass density and temperature respectively.

The other symbols have their usual meanings; B is the magnetic
field and J, the current density, is related to B by
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3=7xB. (3)

Finally, % is the gravitational acceleration. Physically,
there are three different orders of approximation to determine
the magnetic field configuration. The first and second order
approximations are the current free (potential) and force-free
magnetic field, respectively. Within these orders of
approximation the magnetic force vanishes, and the pressure
force is balanced by the gravitational force which leads to the
hydrostatic equilibrium in the solar atmosphere. Under these
circumstances, the mathematical model for the magnetic field
configuration can be represented by

7% B =aB , (4)

This expression possesses three different physical meanings,
which are: (i) a = 0, corresponds to the current free case in
which the magnetic field is potential, (ii) « = constant,
corresponds to the linear force~free magnetic field which
implies a constant current-to-magnetic field ratio in a region
and (iii) a =a(r), corresponds to the norlinear force-free field

which implies a non-constant current~to-magnetic field ratio in
a region.

Finally, ¢the third order of appoximation 1s the
magnietohydirostatic equilibrium in the solar atmngrhere which is
given by Eq. (1). I€ there is information on_B and p on the
source surface, it is possible to extrapolate B and p upward.
Since there only are measurements of the magnetic field on the
source surface (photosphere), it is not possible to extrapolate

magnetohydrostatic equilibrium field-configurations at the
present time.

In the meantime, we shall focus our attention on the
nonlinear force-free field configuration. For the purpose of
this paper, we have selected two techniques for this
investigation. These two techniques are progressive extension
method (PEM) (Wu et al., 1985, 1990) and iterative method (IM)

(Sakurai, 1981). A brief description of these two methods is
presented below:

Progressive Extension tethod (PEM)

The progressive extension method is formulated as an
initial-value problem (i.e., Cauchy problem) using a finite
difference scheme which 1s similar to a Taylor expansion. &
detailed description of this method is givenby Wu et al. (1990).
They have demenstrated the usefulness of this methed, and the

numerical algorithm has been verified by extrapolation of an
analytical solution (Low, 1982).
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Iterative Method (IM)

A number of authors (see references in Gary, 1990) have
utilized an iterative method originated by Grad and Rubin (1958)
to extrapolate the nonlinear force-free magnetic field from
boundary data. For convenience, we simply choose the iterative
method developed by Sakurai (1981) in this study. His method is
based the integral equation representation of Eg. (1), and the
discretization is made by the technique of finite element
method. A detailed description of this technique was given by
sakurai (1981), and we shall not repeat it here.

III. NUMERICAL RESULTS

In order to make comparison bhetween the PEM (Prcgressive
Extension Method) of Wuet al. (1985, 1990) and the IM (Iterative
Method) of Sakurai (1981), we have chosen the vectoral magnetic
field observed at Okayama Astrophysical Observatory on May 26,
1985 (Sakurair and Makita, 1986) as the boundary for
extrapolation using these two methods. The observed magnetic
field vector 1is shown in Figure 1.

MCS526C DATE 83526 TIME(JST} 10 2 13 .11 13 5
OBSERVED FiELD VECTOR

(/"%v(( - l',j\%% :‘:':..'. )
C LV
%1 2?\/ 5

Figure 1. Magnetic field vector ©observed at Okayama
Astrophysical Observatory on May 26, 1983. Solid
and dotted centours show rositive and negative
longitudinal fields, respectively, with levels = 10,
20, S50, 100, 200, 500 G. Arrows 1indicate the
transverse vector.
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Using these observaticnal data as a source surface, we
obtained the nonlinear force-free field configuration by using
the apove mentioned two methods as shown in Figure 2, where
Figure 2a 1is obtained by using the IM and Figure 2b by using PEM.
In addition we have extrapolated the potential field
configuration using PEM in comparison with the potential field
~iven by Sakurz21i and Makita (1986), see Figure 3. From these
results, cpserve that th2 ceducea magnetic field conricurat:ons
albeit not identical, in fact, qualitatively resemble each other
to a large extent.

Figure 2. l!onlinear force-free field lines computed by (a)
Iterative Method (IM) and (b) by Progressive

Extension Method (PEM) using the data shown in Figure
1.

Figure 3. (a) Potential field lines computed by IM and (b)
potential field lines computed by PEM using the
observation given in Figure !
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IV. DISCUSSION

Before we analyze the causes of these differences seen in
the two extrapolations we review the fundamental differences
between the two methods. These differences canbe summarized as
follows:

1. The lterataiveiletnod (Ii) speciries tnevalueofixona
portion of the boundary plane (e.g. on a positive field
region) and cannot assign the value of a on the whole
boundary plane, since that would introduce an
inconsistency in the extrapolation process. The
values of a« in the whcle boundary plane are determined
by the observed data for PEM. In this fashion, there
is an electric current only along the particular field
line in the IM extrapolation, while the electric
current is distributed in the whole domain of
calculation for the PEM extrapolation.

2. The IM type of extraplation 1s convergent only for
small values of «. Physically, this implies that the
electric current in the region of interest must be
small. On the other hand, the PFM type of
extrapolation does noet have this limitation.
However, the accuracy of the computea a-vaiue
deteriorates at the points near the neutral line (i.e.
B, » 0). This may cause a misrepresentation of the
magnetic field configuration. The grid size of the
extrapolation is controlled by the numerical stability
criteria as given by Wu et al. (1990).

3. The fact that the value of a is assigned at one of the
two foot points of a particular field line in the IM
while the values or a are determired cn the entire
boundary surface 1n the PEM makes 1t difficult tomatch

and compare the field lines for these two different
methods.

On the basis of these differences of extrapolation
procedures, we may understand why the magnetic field
configurations obtained from the same data with these two
nethods are not identical. For example, Fiqure 2, shows some
differences 1in magnetic fuleld-line configurations, but the
lines connecting different regions of polarities are quite
similar. lote that for two regions of opposite polarities near
the right center, the PEM extrapolation doesn‘t show any
connection by field lines, while the IM type extrapolation does.
However this 1s due simply to the fact that the field lines in
this region are very low and short, and cannot be discerned in
this drawing. Plots of the front view of Figure 2b, clearly

indicate that the regions are connected by field lines (marked by
A) as shown in Figure 4.
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Figure 4. The front view of the nonlinear force-free field
computed by PEM using the observtion given in Figure
1. It should be noted that the field lines near the

top are not accurate due to numerical procedure as
discussed by Wu et al. (1990).

We further notice that the configuration of the field lines
obtained by IM extrapolation is very similar to a potential field
line configuration. This is because the IM requires that the
value of a be small (i.e. slightly deviating from potential).
On the other hand, the PEM excrapolation does not have this
limitation. It is understood thut the degree of deviation from
a potential field depends on the value of a, that is the strength
of the local electric current. Therefore, the configuration of
magnetic field lines is affected.

In summary, we conclude:
(i) Both methods do produce qualitatively similar results.

(ii) The accuracy of PE has been verified by an analytical
solution (Wu et al. 1990); verification of IM is still
needed.

(iii) There are limitations on the value of a« for IM, but not
for PEM.

(iv) The accuracy for PEM deteriorates when the height of
extrapolation exceeds one third the hor:zontal length,
because of the propagation of the accummulated
numerical errors at each level (Wu et al. 1990).
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CONCLUDING REMARKS *
Under this grant, significant contributions are made for understanding
the photosphere-corona-interplanetary couplings. The highlights of these

findings can be summarized into three areas as follows:

(i) Shear induced instability as a mechanism for the occurrance of
Coronal Mass Ejections (CMEs).
(ii) A three-dimensional, time-dependent magnetohydrodynamic (MHD) model

of extended corona.

(iii) Progressive-Extension-Method for the extrapolation of non-linear

force-free magnetic field.

The basis of these results have laid the groundwork for further
development of the prediction science and technologies for forecasting solar
flares and geomagentic storms. For example, the shear induced instability
leads to CMEs which could be tested by observations in hwihc a critical value
of "shear" could be obtained. Then, this could be used as one of the
parameters for the prediction of CMEs. The current understanidng is, the CME
has great significant correlation with the occurrance of geomagnetic storms.

In this scenario, we would recommend the following specific subjects for
further investigation:

1. Numerical Simulation of the Formation and Evolution of
the Active Region.

To perform such a study, we need to employ the PEm to extraplate the
magnetic field configuration from the observations. Using this realistic
magnetic field configuration as the initial condition for our three-
dimensional MHD model, compute the evolution of the physical plasma parametecs

and fields to determine the critical values of these physical parameters for
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occurance of solar activities.
2. Numerical Accuracy Tests for MHD Models
In order to learn the realiability of these numerical simulations, these

MHD models need to be tested carefully in which limitations on these models

should be established.

3. Real-Time Tests

If the results in (2) are positive, we should document these models to
transfer them to the proper Air Force Laboratory for real-time tests. Thus, a

prediction technology could be developed for the protection of satellite

systems and others.




